

THERAPEUTIC DRUG MONITORING IN TB

KEY CONCEPTS AND PRACTICAL APPLICATIONS

John Zeuli, PharmD, BCPS, AAHIVP ID clinical Pharmacist Mayo Clinic, Rochester, MN

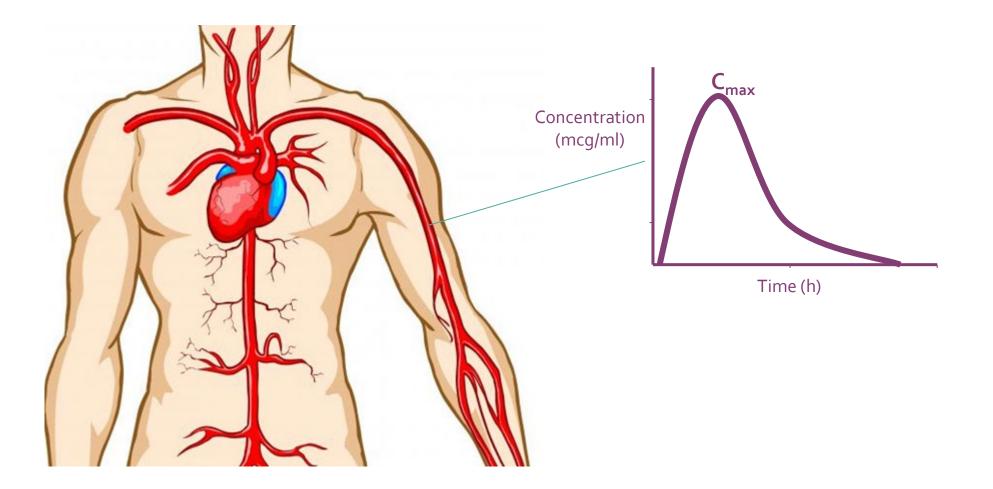
DISCLOSURES

- No relevant financial disclosures
- Off-label mention:
 - Clofazimine for TB
 - Levofloxacin for TB
 - Moxifloxacin for TB
 - Rifabutin for TB
 - Amikacin for TB

LEARNING OBJECTIVES

- Review key concepts of therapeutic drug monitoring (TDM)
- Identify TB cases that require TDM
- Interpret TDM results and adjust drug therapy appropriately

THERAPEUTIC DRUG MONITORING (TDM)


WHAT, WHY, AND WHO

WHAT IS THERAPEUTIC DRUG MONITORING?

- Measuring drugs levels
- Designated intervals
- Target concentrations/range
- Optimize dosage regimen

BLOOD LEVELS = SURROGATE MARKER

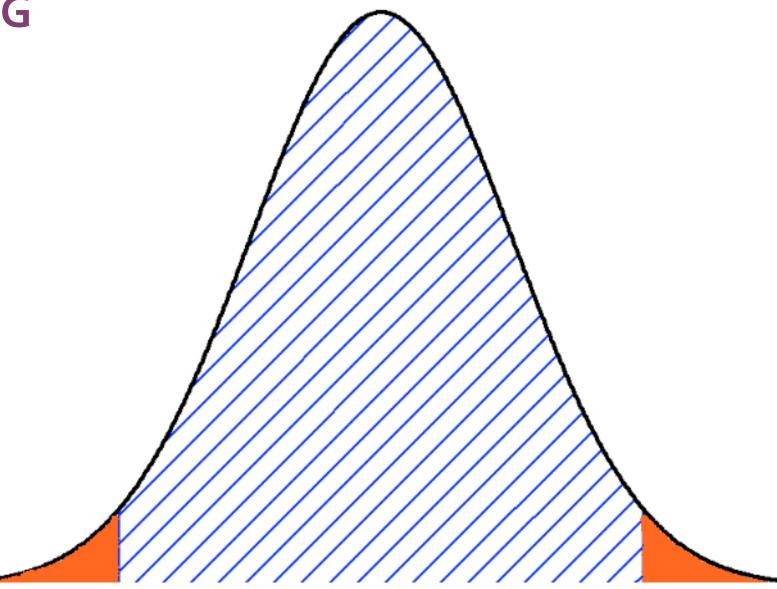
WHY DO DRUG LEVELS IN TB?

- Efficacy target
- Minimize toxicity
- Compliance measure
- Confirm absorption
- Assess degree/presence of drug interaction

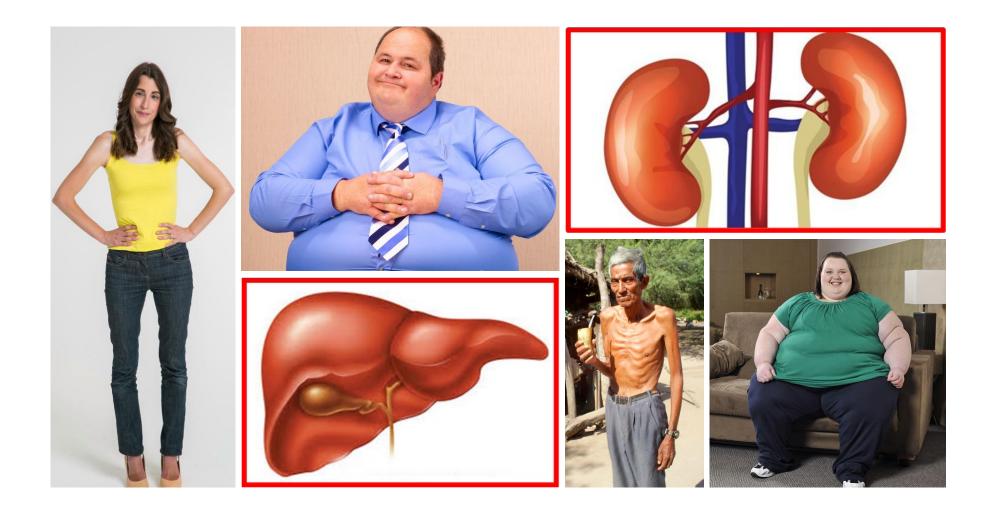
ANTIMICROBIAL DOSE DETERMINATION

- Pre-clinical
 - Microbiology
 - PK/PD targets
 - Animal models

- Monte Carlo simulations
- PTA, MIC distribution, CFR


- Phase 1
 - Human pharmacokinetics
 - Safety
 - Maximum tolerated dose

- Phase 2 + 3
- Dosing schema
- Efficacy/safety
- Clinical validation


STANDARD DOSING

Mean

Majority

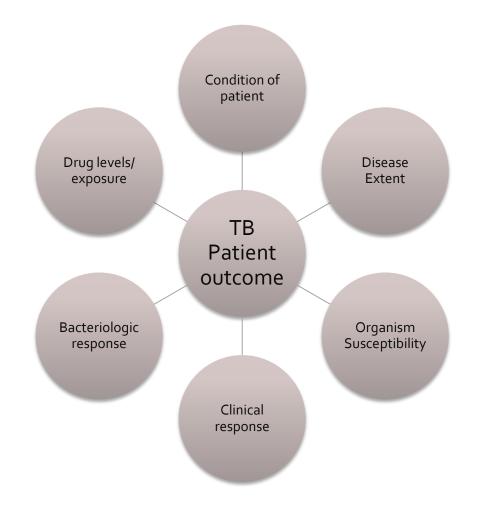
SAME DOSE FOR ALL?

<u>Standard TB drug doses</u>

- Anticipated exposure
- Expected outcome

• <u>TDM</u>

- Target serum exposure
- Individualize treatment

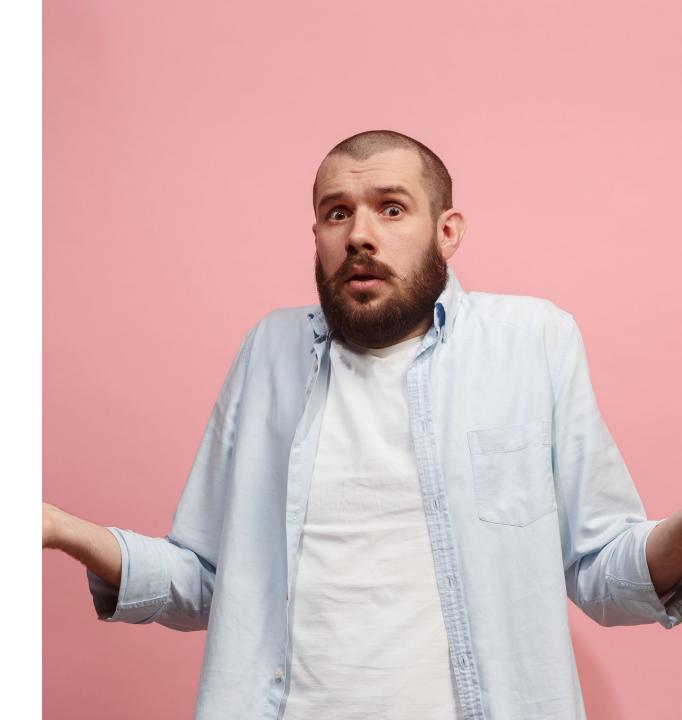

TDM = More information

TDM - NOT A MAGIC BULLET

CONTRIBUTION TO PATIENT OUTCOME

DATA PROGRESS OF TDM POTENTIAL IN TB

<u>TB slow clinical response</u> ITDM eval


- Majority = low 2h level of TB therapy¹
 - RIF (52%), INH (59%), and EMB (31%)
- 17 of 20 (85%) had a low drug concentrations²
 - All = delayed culture conversion
- <u>TDM Cohort outcome comparison</u>³
 - ↑ Therapy failure with low:
 - RIF (p=0.04), INH (p=0.04), RIF + INH (p =0.005)

Low drug level + increased dose I culture conversion/clinical response⁴

- 1. Heysell et al. Emerg Infect Dis. 2010; 16(10):1546–53
- 2. Babalik et al. Can Respir J. 2011;18(4):225–9. (31)
- 3. Prahl et al. J Antimicrob Chemother. 2014; 69(10):2841-7
- 4. Magis-Escurra et al. Pulm Pharmacol Ther. 2012;25(1):83–6

TDM FOR WHOM?

- Slow responders (> 2-3wk smear positive)
- Extremes of weight (low/high)
- Impaired renal/hepatic/drug clearance
- Concerning drug interactions
- Malabsorption potential
- Elevated drug toxicity risk

"ALL MODELS ARE APPROXIMATIONS. BUT SOME ARE USEFUL."

-GEORGE BOX

SUMMARY

Blood level assessment:

Informs drug exposure

<u>Standard TB drug doses</u>

- Anticipated exposure
- Expected outcome

<u>Outliers exist</u>

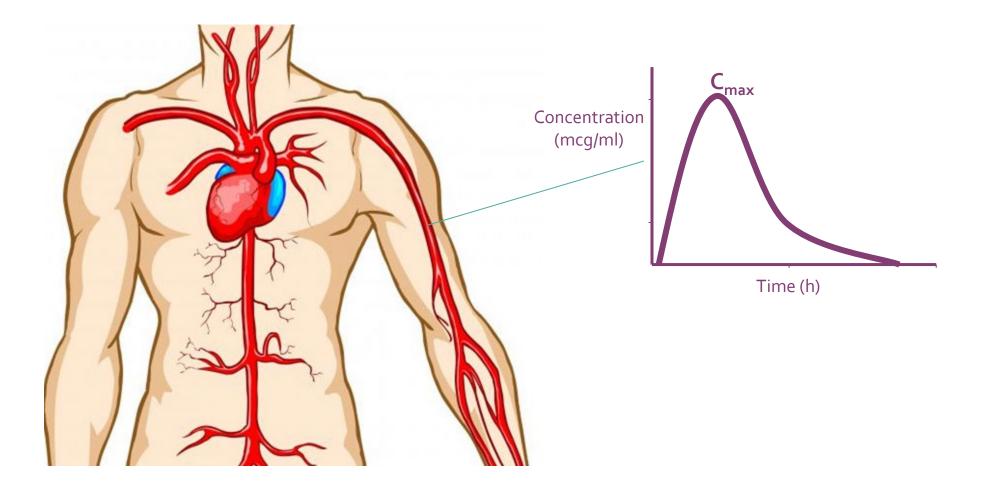
• <u>TDM</u>

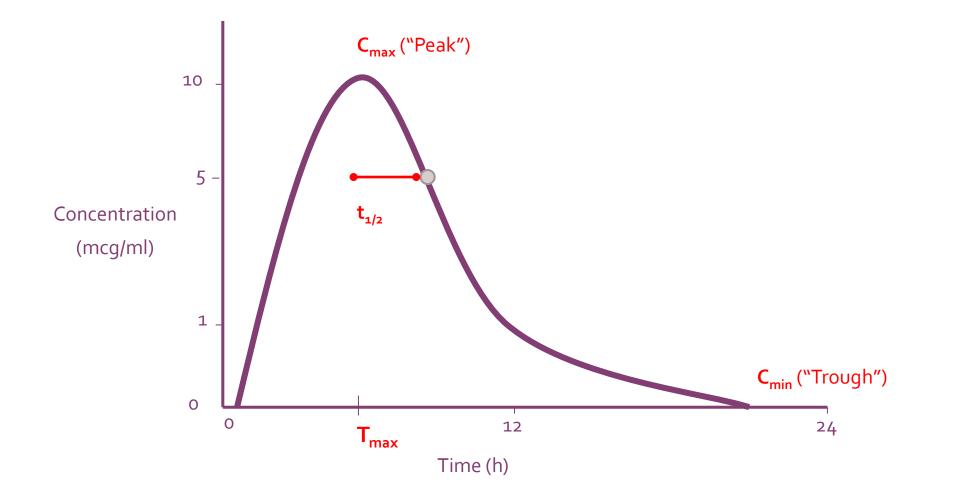
- Individualized drug exposure information
- May enhance TB outcome

<u>TDM candidates</u>

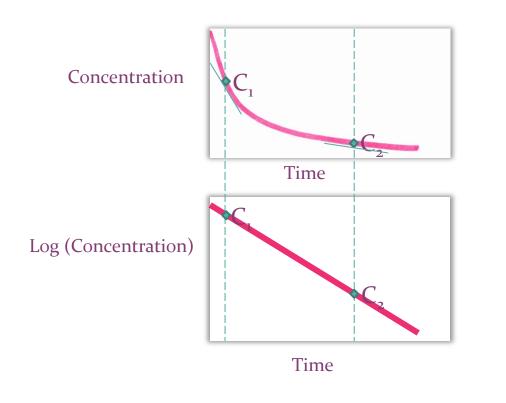
- Slow TB response
- High/low exposure potential
- Drug resistance

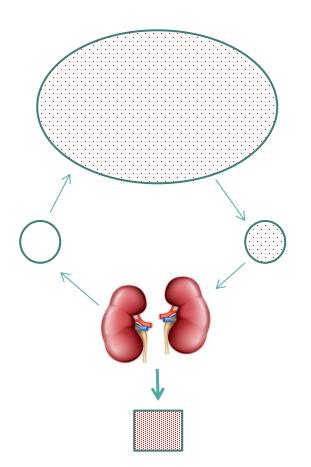
WHICH PATIENT SCENARIO WOULD <u>LEAST</u> LIKELY SEE BENEFIT FROM SERUM DRUG LEVEL ASSESSMENT OF ORAL TB THERAPY?


- **A** Rifabutin (CYP3A4 substrate) + Darunavir/Ritonavir (CYP3A4 inhibitors)
- **B** Chronic liver disease (Child's Pugh C), ascites, and low body weight (45kg)


- **C** Non-cavitary, drug-sensitive TB. 70kg. Otherwise, healthy
- **D** MDR TB with history of small bowel resection

HOW TO PERFORM 2

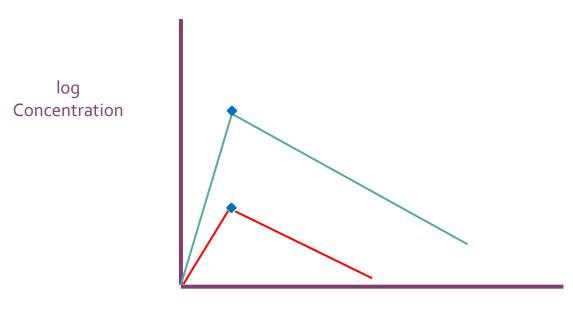

BLOOD LEVELS = SURROGATE MARKER



PHARMACOKINETIC TERMS

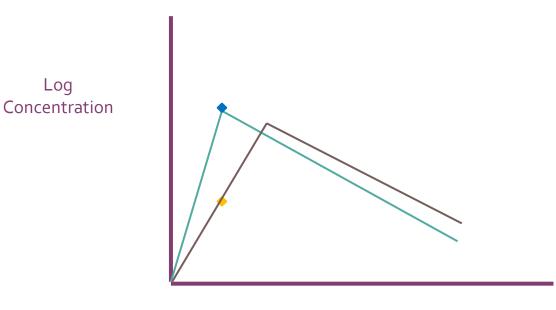

FIRST ORDER KINETICS

WHEN TO DRAW BLOOD FOR ORAL TB TDM



PEAK (C_{MAX}) BLOOD DRAWS

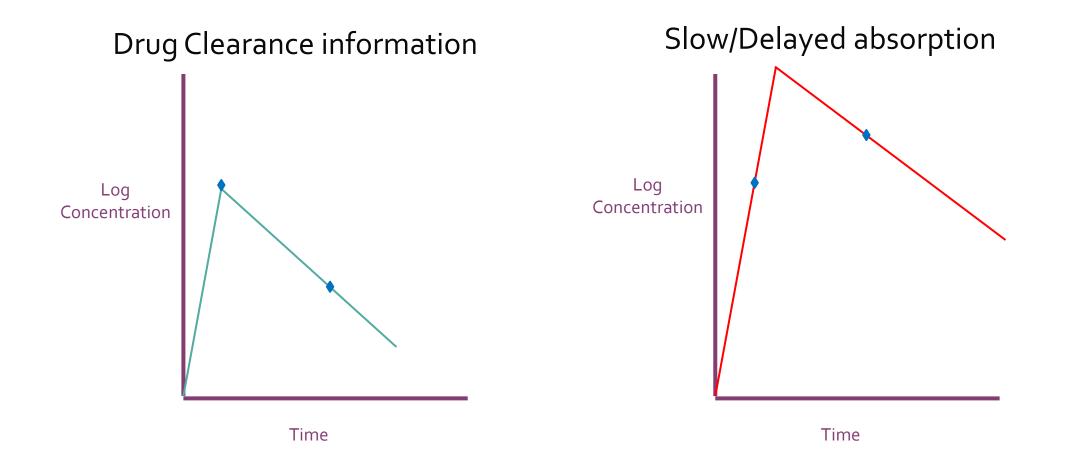
- TWO(2)-hour post oral dose blood sample
 - Approximates "peak" in most oral TB drugs
 - T_{max} close to 2 hours
 - Absorption information


- Trough levels
 - Many TB drugs often below assay detection limit

SINGLE ASSESSMENT- MALABSORPTION

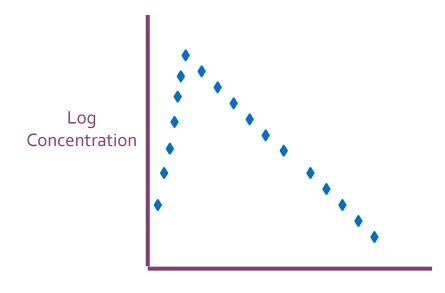
Time

SINGLE ASSESSMENT – DELAYED ABSORPTION


Time

TWO ASSESSMENTS = IMPROVED INFORMATION

- <u>Adding a 6-hour post oral dose</u> <u>blood sample</u>
 - Rate + extent of absorption
 - Elimination/drug clearance
 - Malabsorption vs delayed absorption
- <u>Two assessments: 2-hour + 6-hour</u> post oral dose blood samples
 - Preferred approach for most oral TB therapies



2-HOUR + 6-HOUR POST ORAL DOSE LEVELS

DUAL ASSESSMENT: 2H AND 6H LIMITATIONS

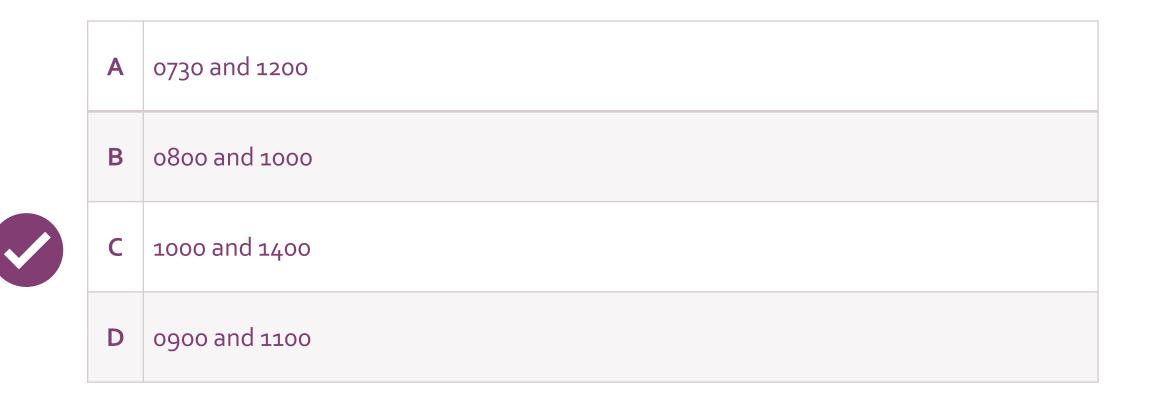
• Still only 2 time points

BLOOD ASSESSMENTS: DRUG NUANCES

Drug	Peak Assessment (hours)	Additional Assessment (hours)
Bedaquiline	<mark>5</mark>	<mark>24*</mark>
Clofazimine	2-3	6-7
Cycloserine	2-3	6-7
Ethambutol	2-3	6-7
Ethionamide	2	6
Isoniazid	1-2	4-6
Levofloxacin	2	6
Linezolid	2	<mark>5-6, 24*</mark>

Drug	Peak Assessment (hours)	Additional Assessment (hours)
Moxifloxacin	2	6
Para-amino salicylic acid	<mark>6</mark>	-
Pretomanid	<mark>5</mark>	<mark>24*</mark>
Pyrazinamide	2	6
Rifabutin	3-4	7
Rifampin	2	6
Rifapentine	<mark>5-6</mark>	<mark>24*</mark>

* Trough level can be taken immediately before dose


Tables adapted from: Drug-Resistant Tuberculosis: A Survival Guide for Clinicians, Third Edition/ 2022 Updates. Curry TB Center

SUMMARY-TDM APPROACH MOST ORAL TB DRUGS

- Dual blood level assessment
 - 2-hour and 6-hour post oral doses
- Consider PK of specific drugs during interpretation
- Add trough
 - Bedaquiline
 - Linezolid
 - Pretomanid
 - Rifapentine

RIFAMPIN, ISONIAZID, PYRAZINAMIDE AND ETHAMBUTOL ADMINISTERED AT 0800

WHEN SHOULD BLOOD LEVELS BE DRAWN?

ORALTDM CASES

CASE – INH/EMB RESISTANCE

- 31 yo F (74kg) with bilateral non-cavitary pulmonary TB
 - INH and EMB resistance
 - Normal kidney/liver function.
 - No comorbidities.
 - Regimen updated to:
 - Rifampin 600mg daily
 - PZA 1500mg daily
 - Moxifloxacin 400mg daily

CASE – INH/EMB RESISTANCE TDM RESULTS AS FOLLOWS:

Drug/Dose	2h-level (mcg/ml)	6h-level (mcg/ml)	Reference Cmax
RIF 600 mg	6.8	1.7	8 - 24
PZA 1500 mg	31.2	19.6	20 - 60
MXF 400 mg	2.1	1.3	3 - 5

HOW WOULD YOU ADJUST DAILY DOSES?

- **A** No dose adjustments necessary
- **B †** Rifampin to 900mg + **†** Moxifloxacin 800mg daily
- **C †** Rifampin to 1200mg + continue Moxifloxacin 400mg
- **D** | ↑ PZA to 3gm, ↓ Rifampin to 450mg, ↑ Moxifloxacin 600mg

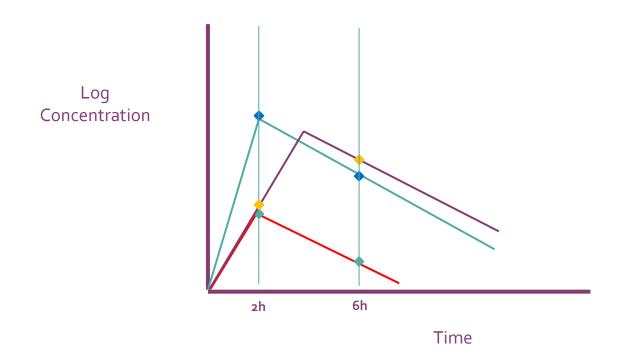
- Moxifloxacin levels
 - Rifampin + Moxifloxacin
 - Moxifloxacin \downarrow ~30% when combined with Rifampin
 - Dose adjustments often warranted
- FQ + Rifampin: C_{max} dependent effects
- Monitor high FQ doses and QT prolongation

- 48 yo F (62kg) with pulmonary TB
 Recent immigrant from Somalia
 Cavitary lesion in right upper lobe
 Initiated on daily drug therapy:
 Rifampin 600 mg
 Isoniazid 300 mg
 Pyrazinamide 1000 mg
 Ethambutol 800 mg
- Still smear positive at 3 weeks, TDM ordered

Drug/Dose	2h-level (mcg/ml)	6h-level (mcg/ml)	Reference Cmax
RIF 600 mg	4.02	6.11	8 - 24
INH 300 mg	2.1	Trace	3-6
PZA 1000 mg	22.2	17.4	20 – 60
EMB 800 mg	1.78	1.44	2-6

HOW WOULD YOU ADJUST DAILY DOSES?

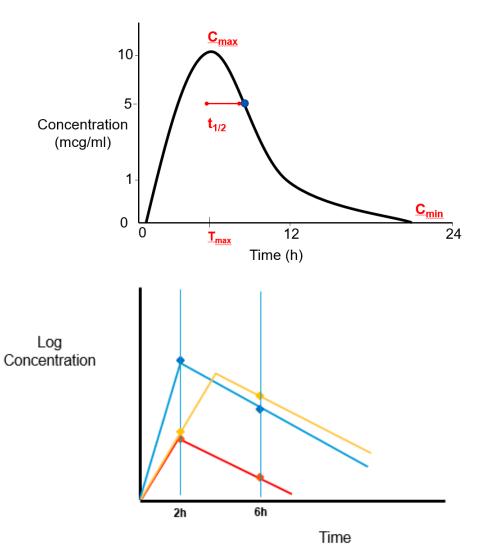
Α	↑ RIF to 1200mg + continue INH, PZA, EMB doses
---	--


- **B** ↑ INH 600mg + continue RIF, PZA, EMB doses
- **C** \uparrow RIF 1200mg + \uparrow INH 450mg + \uparrow PZA 1500mg + \uparrow EMB 1200mg
- **D** No dose adjustments necessary

Drug/Dose	2h-level (mcg/ml)	6h-level (mcg/ml)	Reference Cmax
RIF 600 mg	4.02	6.11	8-24
INH 300 mg	1.42	Trace	3-6
PZA 1000 mg	22.2	17.4	20 – 60
EMB 800 mg	1.78	1.44	2-6

- INH = poor absorption/low levels $\rightarrow \uparrow 450$ mg
- RIF = low absorption/low levels + delayed absorption $\rightarrow \uparrow 1200$ mg
- EMB = low levels on low dose \rightarrow \uparrow **1200mg**
- PZA = WNL (low end) on low dose \rightarrow \uparrow **1500mg**

• Recheck levels on new doses


Delayed + Low absorption profile

CASE – CAVITARY TB SUMMARY POINTS

- Delayed absorption
 - Expected T_{max} is later than expected
 - For typical $T_{max} \sim 2h$
 - 6h level > 2h level
- Malabsorption
 - \bullet 2-hour $C_{\rm max}$ is lower than expected
 - 6h level lower than 2h level
 - Reflecting anticipated clearance

Daily dosing	EMB	PZA
56-75kg	1200 mg	1500 mg

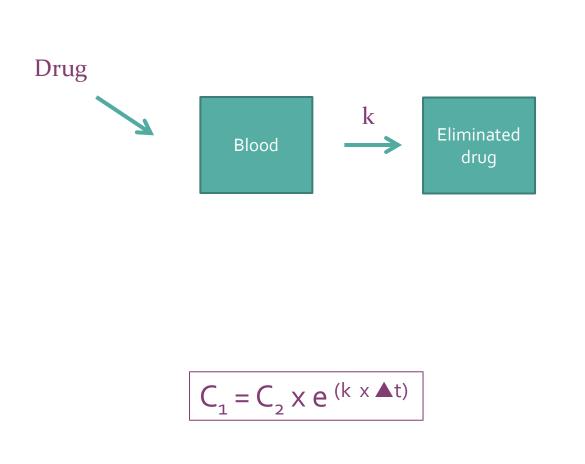
AMINOGLYCOSIDE

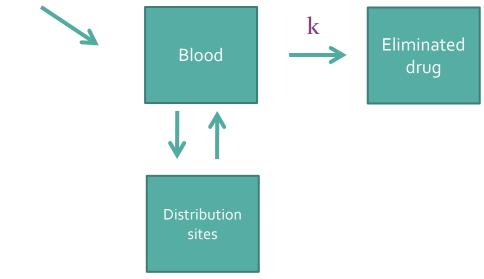
CASE – MDR TB 18 YO (71KG) M WITH MDR-TB NORMAL RENAL/HEPATIC FUNCTION NO OTHER MEDICATIONS

HOW SHOULD YOU ASSESS BLOOD LEVELS?

2h and 6h after oral doses

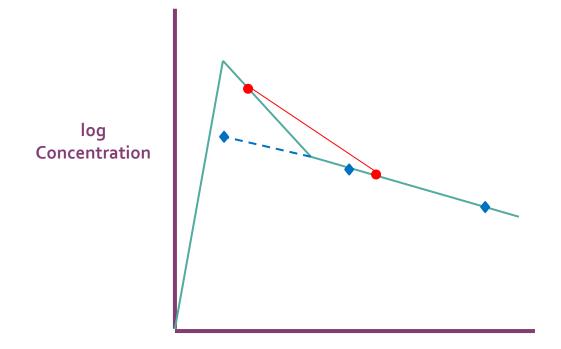
• Oral


- Moxifloxacin 400 mg
- Clofazimine 100 mg
- Linezolid 600 mg
- Ethambutol 1200 mg
- IV
 - Amikacin 1100 mg (~15mg/kg)


Α

- **B** AMK trough + 2h/6h post oral doses
- **C** LZD trough + 2h/6h post oral dose + 2h/6h after END of AMK infusion
- **D** LZD trough + AMK trough + 2h/6h post oral doses

DISTRIBUTION: ONE VS TWO-COMPARTMENT



Drug

$$C = \frac{D(\alpha - k_{21})}{V_{D_1}(\alpha - \beta)}e^{-\alpha t} + \frac{D(k_{21} - \beta)}{V_{D_1}(\alpha - \beta)}e^{-\beta t}$$

AMINOGLYCOSIDE CONCENTRATION-TIME PROFILE

AMINOGLYCOSIDE TDM IN TB

- TDM Strategy
 - Post-infusion levels Confirm dose
 - C_{max} = bacterial effect
 - Dose confirmation 🛙 weekly trough
 - Clearance confirmation
 - Toxicity mitigation

- 1) <u>Aminoglycosides blood levels</u>:
 - 2 hours + 6 hours
 - After <u>END</u> of infusion
- <u>Calculate C_{max}</u>
 Back-extrapolation
 - Dose adjust to target
- 3) <u>Aminoglycoside C_{max} goals</u>:
 15 mg/kg : <u>35-45 mcg/ml</u>
 25 mg/kg: <u>65-80 mcg/ml</u>

AMINOGLYCOSIDE ASSESSMENT REASONS

• Why wait 2 hours after an IV dose?

- Allows re-distribution and blood-tissue equilibrium
- Prevents artificial inflation of clearance calculation
- Allows 1-compartment model and one-compartment equations
- Why 2 levels if absorption not an issue?
 - Both required for elimination rate constant (k) calculation
 - Measure of body's ability to clear drug
 - Determines half-life (0.693/k)
 - Needed to back-extrapolation Cmax (end of infusion)


CASE - MDR TB

Step 1: solve for k

$$C_1 = C_2 \times e^{(k \times At)} \rightarrow k = [\ln (C_1/C_2)]/At$$

- Elimination rate constant (k)
 - First order rate constant for calculating drug elimination
 - 'slope' of our log-scale: Concentration Time profile
 - <u>k determines half-life</u>
 - Half-life = 0.693/k
 - If k = 0.331 h⁻¹, half life = 3h

CASE – MDR TB

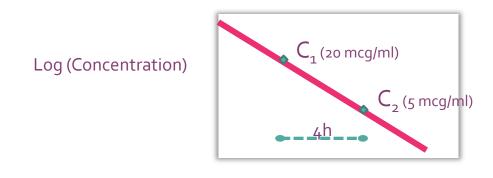
Drug/Dose	Trough (mcg/ml)	2h-level (mcg/ml)	6h-level (mcg/ml)	Reference Cmax
MXF 400 mg	-	4.1	2.8	3-5
CFZ 100 mg	-	1.3	0.7	0.5 - 2.0
EMB 1200 mg	-	3.1	2.2	2-6
LZD 6oomg	2.9	28.1	17.6	12 – 26
AMK 1100 mg IV	-	20	5	35 - 45

HOW SHOULD YOU ADJUST ORAL TB DOSES?

ŀ	A	No dose adjustment required		
E	В	↓ MXF to 200mg		
(С	↑ CFZ to 200mg		
	D	↓ LZD to 300mg daily		

CASE – MDR TB

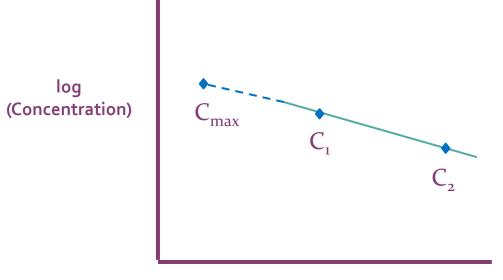
• Oral TDM assessments:


- MXF, CFZ, and EMB doses appropriate
- Linezolid
 - 2h level elevated
 - Troughs >2 (associated with toxicity)
 - Reduce LZD to 300mg daily
- What adjustments do you need to make to Amikacin?

Drug/Dose	Trough (mcg/ml)	2h-level (mcg/ml)	6h-level (mcg/ml)	Reference Cmax
MXF 400 mg	-	4.1	2.8	3 - 5
CFZ 100 mg	-	1.3	0.7	0.5 – 2.0
EMB 1200 mg	-	3.1	2.2	2 – 6
LZD 6oomg	<mark>2.9</mark>	<mark>28.1</mark>	17.6	12 – 26

CALCULATE THE ELIMINATION RATE CONSTANT

Drug/Dose	Trough (mcg/ml)	2h-level (mcg/ml)	6h-level (mcg/ml)	Reference Cmax
AMK 1100 mg IV	-	20	5	35 - 45


- <u>Step 1: solve for K</u>
- k = [ln (C₁/C₂)]/ \blacktriangle t
- k = [ln (20/5)]/4h = 0.346 h⁻¹
- Half life = 0.693/k = 2 hours

CALCULATING THE C_{MAX}

Step 2: Use k to calculate C_{max}

- C_{max} = Concentration (end of infusion)
- $C_{max} = C_1 \times e^{(k \times At)}$
- $C_{max} = 20 \times e^{(0.346 \times 2)} = 40 \text{ mcg/ml}$

- AMK 1100mg in Cmax goal range (35-45 mcg/ml)
 - Continue AMK 1100mg daily
 - Weekly trough/SCr for toxicity monitoring

CASE – MDR TB: SUMMARY POINTS

- Linezolid trough levels monitored for toxicity
- Do not draw aminoglycoside levels during distribution phase
 - Artificially inflated
 - Unable to determine appropriate clearance
- Aminoglycoside levels (Amikacin, Streptomycin, Kanamycin)
 - Draw 2 post-distribution levels
 - 2h and 6h after <u>END</u> of infusion
 - Calculate k (determines half-life and C_{max})
- Aminoglycoside goal range for calculated C_{max}
 - 15 mg/kg: **35 45 mcg/ml**
 - 25 mg/kg: <u>65 80 mcg/ml</u>

HELPFUL REFERENCES

- Maranchik NF, Peloquin CA. Role of therapeutic drug monitoring in the treatment of multidrug resistant TB. Under Review
- Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs. 2014 Jun; 74(8):839-54. PMID: 24846578
- Curry International Tuberculosis Center and California Department of Public Health, 2022: Drug-Resistant Tuberculosis: A Survival Guide for Clinicians, Third Edition/ 2022 Updates. Therapeutic Drug Monitoring [p 41-42].
 - <u>https://www.currytbcenter.ucsf.edu/products/cover-pages/drug-resistant-tuberculosis-</u> <u>survival-guide-clinicians-3rd-edition</u>

QUESTIONS & ANSWERS

THANK YOU!

