
Drug Resistant TB

Samatha Malley
ARNP
Peoples Community Health Clinic, Waterloo, IA
USAPI Regional TB Training 2024

Objectives

- Review basic definitions in drug resistant TB
- Describe how drug resistance happens
- Discuss basic regimens for drug resistant TB

Definitions

- Mono-resistant TB disease: only resistant to one drug
- Poly-resistant TB disease: resistant to two drugs that are not RIF or INH
- MDR TB disease: resistant to at least INH and RIF
- Pre-XDR TB disease: resistant to INH, RIF, and a FQL or INH, RIF, second line injectable (amikacin, capreomycin, and kanamycin).
- XDR TB disease: resistance to INH, RIF, a FQL, and a second line injectable or INH, RIF, FQL, BDQ or LNZ

Drug Classes					CDC
Resistance classification	Isoniazid & Rifampin	Fluoroquinolone (at least one)	Second-Line Injectable (at least one)	Bedaquiline	Linezolid
MDR TB	X				
Pre-XDR* TB	X		X		
	X	×			
XDR* TB	X	X	X		
	X	X		X	
	X	×			×

Resistance classifications and drug classes for MDR, pre-XDR, or XDR TB.

* Each row indicates one combination of drug resistance that meets the respective definition of pre¬ XDR or XDR TB.

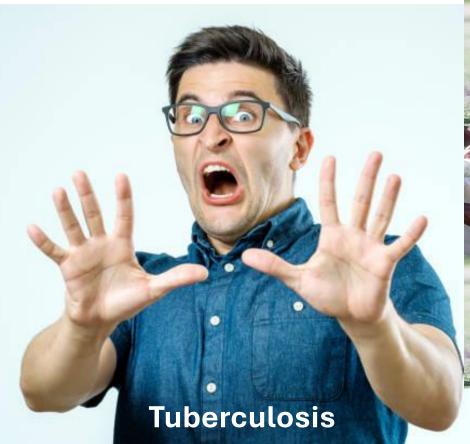
The Impact of MDR TB

- WHO reported 410,000 cases in 2022
 - 160,000 deaths
- Western Pacific Region accounts for 16% of MDR TB disease globally

- Primary Resistance
 - TB Disease following infection with MDR TB
 - Reactivation of latent drug-resistant TB infection

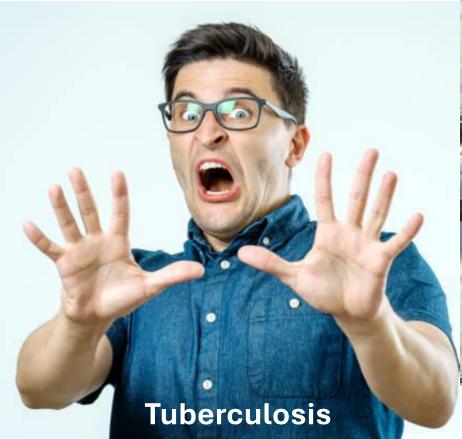
- Secondary Resistance
 - Poor adherence
 - Inadequate treatment of TB disease
 - Malabsorption of ATT
 - Interrupted drug supply
 - Overuse of antibiotics

- Genetic mutations confer drug resistance
 - TB is smart
- When patients have TB disease some, of the TB germs will be resistant to one of our drugs
 - Multidrug therapy



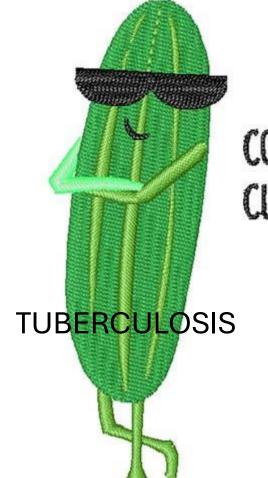
RIFA

ISONIAZIO



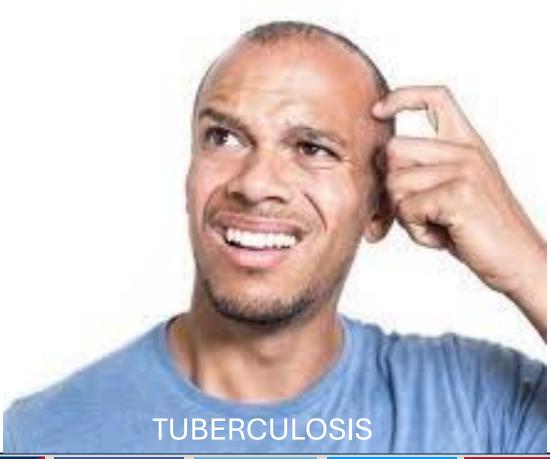
RIFA

ISONIAZIO



COOL AS A CUCUMBER

- TB is smart and strong
- It will learn to fight Rifampin



Patient misses DOT

How do we prevent this?

- DOT
 - Patients get all or none of their drugs
- Multi-drug therapy
 - Short periods of phased reintroduction may happen in certain scenarios
- Try our best to get a culture
- Get both genotypic and phenotypic DST when feasible

When is this happening?

- During treatment of active disease
 - Usually occurs 1-3 months into drug administration
- Following a relapse
 - Less likely with good DOT and multidrug therapy
- Immediately upon infection with an already resistant strain

Diagnosing MDR TB: Step 1: identify risk

- Risk for resistance should be assessed with all new TB disease
 - Previous TB treatment
 - Epidemiology of the patient
 - Exposure to know or suspected infectious MDR TB

Diagnosing MDR TB: Step 1: identify risk

- History of TB
 - Delayed culture conversion
 - Inadequate clinical response
 - Worsening of symptoms
 - Suboptimal adherence
 - DOT not used in first treatment course
 - Treatment failure or relapse
 - Acquired resistance is much less likely when high quality-DOT is used
 - Inappropriate treatment regimen

Diagnosing MDR TB: Step 1: identify risk

- No history of TB
 - Exposure to documented drug resistance
 - Exposure to suspected drug-resistant TB
 - Travel to an area with high prevalence of drug resistance
 - History of what sounds like TB treatment, even though the patient doesn't report previous treatment

- Initial evaluation:
 - IGRA or TST will test for infection.
 - AFB smear and culture
 - NAAT/Molecular testing
 - Xpert MTB/RIF
 - A positive rpoB mutation usually means MDR TB
 - RIF monoresistance is uncommon
 - False positives are rare but do occur
 - Reassess risk

- Sequencing-based assays
 - All first line drugs
 - Which genes have mutations
 - Get second-line drug testing when
 - RIF resistance
 - You know you need to use a second line drug (FQL for CNS disease)
 - Can't use standard first-line regimen

- Growth based drug sensitivity testing (DST)
 - Still the gold standard
 - 4+ weeks turn round time
 - Solid or liquid media
 - Not a straightforward interpretation
 - Mycobacterium exist on a spectrum (some germs are active, others are latent)
 - Our drugs have different tissue penetrance
 - Different MIC

- Critical concentration
 - The line between resistance and susceptible
 - The drug "kind of" works
 - Slows down growth but doesn't kill it
 - This concentration will be different for every drug but is a fixed value based on the test you're using and correlates with serum drug levels (drug in the blood).
 - Once a specified amount of the strain's TB germs grows at the critical concentration, we consider it resistant

- Minimum inhibitory concentration (MIC)
 - How much drug do I need to kill this TB?
 - Doesn't directly correlate with critical concentration
 - Usually, the critical concentration is enough to kill TB (susceptible TB)
 - Additional or add on test (not necessarily a part of the lab sequence)
- Some drugs may be tested for low and high concentrations of the drug
 - INH, FQL
 - Might be possible to consider keeping the drug on board in certain situations
 - Will the amount of drug required be safe for my patient?

Diagnosing MDR TB: Step 3: treatment

- Expert consult
- Mono RIF resistance is rare- usually BPaLM
- Mono INH resistance: generally, swap INH out for a FQL
 - Consider extending treatment depending on the circumstance
- Otherwise, BPaLM
 - 6 months of duration
 - BDQ: QTc prolongation (EKG 2, 12, 24 weeks), hepatotoxicity
 - LZD: myelosuppression, optic and peripheral neuropathy
 - MFX: rare tendon rupture, QTc prolongation
 - Pa: peripheral neuropathy

Contacts: LTBI

- If susceptible to RIF, you can do 4R
- If MDR generally using a FQL
- Window prophylaxis: expert opinion

Thank you! Questions?

