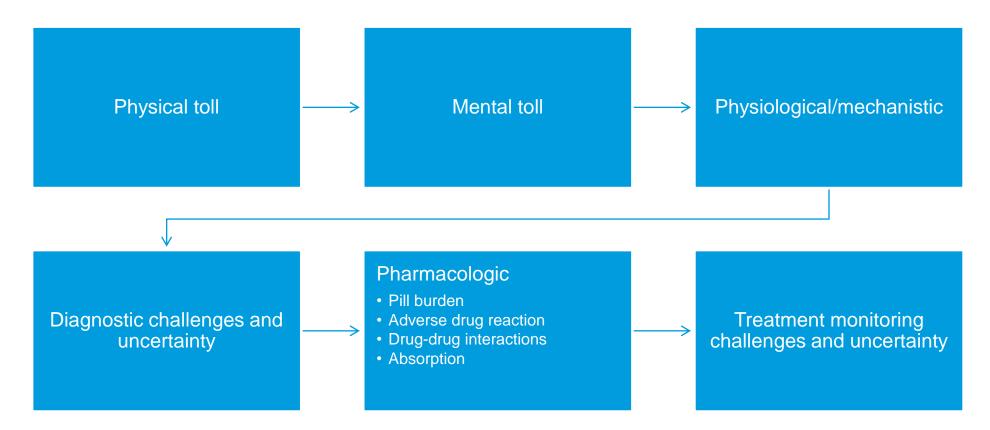


Comorbidities and Tuberculosis Outcomes

Zelalem Temesgen, MD FIDSA Professor of Medicine Principal Investigator, Mayo Clinic Center for Tuberculosis Editor-in-Chief, Journal of Clinical Tuberculosis and Other Mycobacterial Diseases Editor-in-Chief, IDCases

Disclosures

• No relevant financial relationships


Learning Objectives

Describe	how HIV impacts TB outcomes
Describe	how diabetes impacts TB outcomes
Describe	how malnutrition impacts TB outcomes
Describe	how smoking impacts TB outcomes
Describe	how alcohol use impacts TB outcomes

Global estimates of tuberculosis episodes in 2022 attributable to selected risk factors

Risk factor	Risk ratio (uncertainty interval)		Number of people with the risk factor (millions)	Attributable TB episodes (millions, uncertainty interval)		
Alcohol use disorders	3.3	(2.1 to 5.2)	297	0.73	(0.52 to 0.99)	
Diabetes	1.5	(1.3 to 1.8)	509	0.37	(0.27 to 0.48)	
HIV infection	14	(12 to 16)	39	0.89	(0.73 to 1.1)	
Smoking	1.6	(1.2 to 2.1)	998	0.70	(0.50 to 0.95)	
Undernourishment	3.2	(3.1 to 3.3)	711	2.2	(2.0 to 2.4)	

Impact of Comorbidities on TB Natural History and Outcomes

Impact of HIV on TB Outcomes

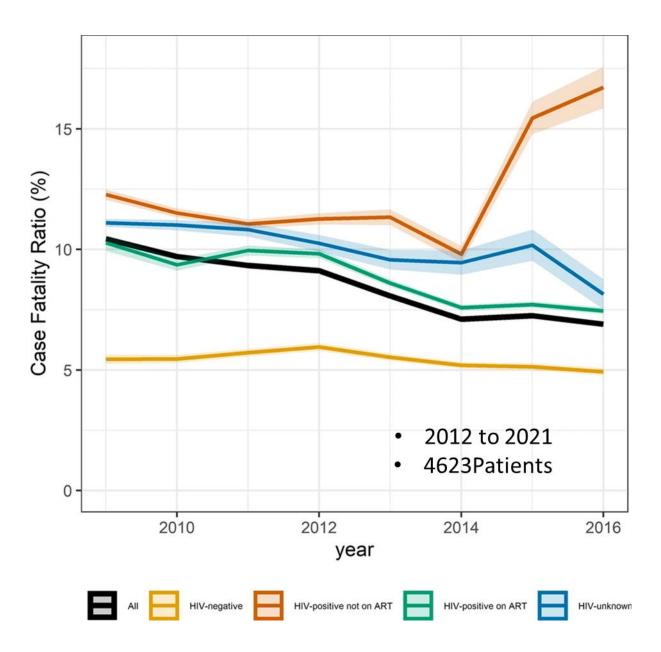
Mayo Clinic Center for Tuberculosis

Granuloma formation during MTB infection

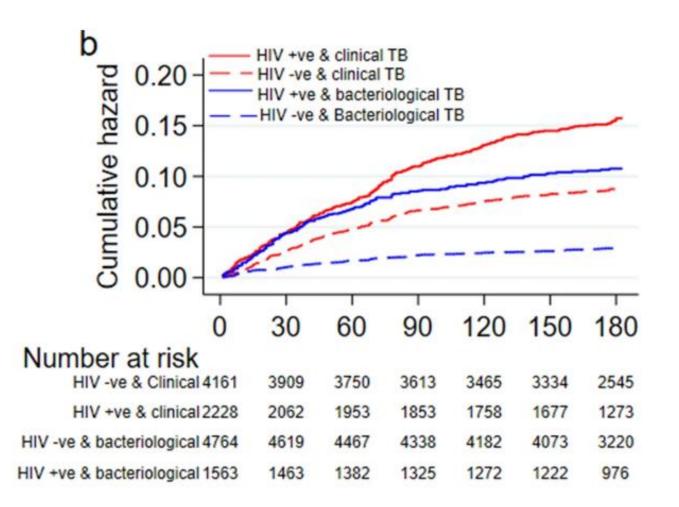
Mayo Clinic Center for Tuberculosis

Téllez-Navarrete, Norma A et al. "Malnutrition and tuberculosis: the gap between basic research and clinical trials." Journal of infection in developing countries 15 3 (2021): 310-319 .

	Shariff et al., 20 Chan et al., 202 Baya et al., 201 Desissa et al., 2
	Sinha et al., 201
	van Den Hof et ; Metcalfe et al., 2 Lukoye et al., 20 Arroyo et al., 20 Tesseme et al.,
Sultana 77 Hagua El	Mulu et al., 2019 Lee et al., 2016 Satti et al., 2013
Sultana ZZ, Hoque FU,	Gunther et al., 2 van Halsema et
Beyene J, et al. HIV	Ulmasova et al., Minion et al., 20 Brito et al., 201
infection and multidrug	Pavlenko et al., Salindri et al., 2 Chuchottaworn
resistant tuberculosis: a	Fikre et al., 2019 Alene et al., 201
	Gobena et al., 2 Macedo et al., 2 Mor et al., 2014
systematic review and	Sethi et al., 201
meta-analysis. BMC Infect	Gaborit et al., 20 Gudo et al., 201
	Kusumawati et a Okethwangu et Ershova et al., 2
Dis. 2021;21(1):51.	Workicho et al.,
	Padilla et al., 20


Upper Authors More Tarthity
OR

Trend in tuberculosis treatment success rates by HIV status


	Completed n(%)	Cured n(%)	Died n(%)	Failure n(%)	Lost to follow-up n(%)	P- value
HIV status						
Negative	1058(47.9)	390(17.7)	528(23.9)	31(1.4)	201(9.1)	
Positive	326(46.6)	49(7.0)	269(38.5)	5(0.7)	50(7.2)	< 0.001

HIV negative status was associated with 22.0% higher proportion of successful treatment outcome compared with being HIV positive

Puplampu P, Kyeremateng I, Asafu-Adjaye O, et al. Evaluation of treatment outcomes among adult patients diagnosed with tuberculosis in Ghana: A 10year retrospective review. IJID Reg. 2023;10:9-14. Published 2023 Nov 10. doi:10.1016/j.ijregi.2023.11.004 Mortality during tuberculosis treatment in South Africa: an 8-year analysis

Cumulative hazard of deaths stratified by type of TB diagnosis with HIV status

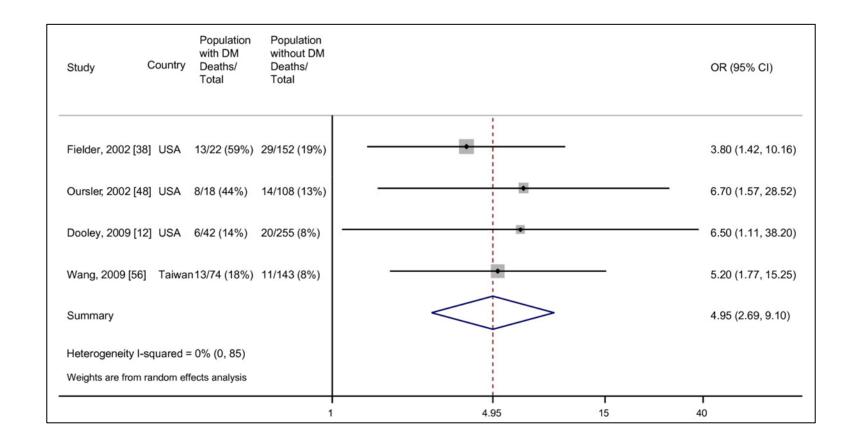
Abdullahi, O., Moses, N., Sanga, D. et al. The effect of empirical and laboratoryconfirmed tuberculosis on treatment outcomes. Sci Rep 11, 14854 (2021). https://doi.org/10.1038/s41598-021-94153-0

Impact of Diabetes on TB Outcomes

Mayo Clinic Center for Tuberculosis

Risk of failure/death for TB patients with DM compared with TB patients without DM

Study	Country	Population with DM Failure and Deaths/ Total	Population without DM Failure and Deaths/ Total		RR (95% CI)
Ambrosetti, 1995 Report [2	3] Italy	3/32 (9%)	33/737 (4%)		2.09 (0.68, 6.4)
Ambrosetti, 1996 Report [2	9] Italy	5/50 (10%)	20/773 (3%)		3.87 (1.51, 9.8)
Ambrosetti, 1997 Report [3	0] Italy	2/40 (5%)	45/667 (7%)		0.74 (0.19, 2.9
Centis, 1998 Report [35]	Italy	5/41 (12%)	61/1059 (6%)		2.12 (0.90, 4.9
Centis, 1999 Report [36]	Italy	2/40 (5%)	28/852 (3%)		1.52 (0.38, 6.1
Mboussa, 2003 [47]	Congo	13/32 (41%)	13/100 (13%)		3.13 (1.62, 6.0
Ponce-de-Leon, 2004 [3]	Mexico	42/172 (24%)	67/409 (16%)		1.49 (1.06, 2.1
Anunnatsiri, 2005 [31]	Thailand	4/38 (11%)	11/188 (6%)		1.80 (0.60, 5.3
Singla, 2006 [50]	Saudi Arabia	1/187 (<1%)	7/505 (1%)	•	0.39 (0.05, 3.1
Alisjahbana, 2007 [11]		8/94 (9%)	32/540 (6%)		1.44 (0.68, 3.0)
Chiang, 2009 [37]	Taiwan	60/241 (25%)	161/886 (18%)		1.37 (1.06, 1.7
Wang, 2009 [56]	Taiwan	13/74 (18%)	11/143 (8%)		2.28 (1.08, 4.8
Summary					1.69 (1.36, 2.1
Heterogeneity I-squared = ⁻ Weights are from random e	,	sis			


Baker, M.A., Harries, A.D., Jeon, C.Y. et al. The impact of diabetes on tuberculosis treatment outcomes: A systematic review. BMC Med 9, 81 (2011). https://doi.org/10.1186/1741-7015-9-81

Risk of TB relapse for TB patients with DM compared with TB patients without DM

Study	Country	Population with DM Relapse/ Total	Population without DM Relapse/ Total			RR (95% CI)
Wada, 2000 [54]	Japan	7/61 (11%)	4/284 (1%)			8.15 (2.46, 26.9
Mboussa, 2003 [47]	Congo	6/17 (35%)	9/77 (12%)			3.02 (1.24, 7.35
Singla, 2006 [50]	Saudi Arabia	2/130 (2%)	3/367 (1%)			1.88 (0.32, 11.1
Maalej, 2009 [46]	Tunisia	4/55 (7%)	1/82 (1%)		*	5.96 (0.68, 51.9
Zhang, 2009 [57]	China	33/165 (20%)	9/170 (5%)		_ <u> </u>	3.78 (1.87, 7.65
Summary					\diamond	3.89 (2.43, 6.23
Heterogeneity I-squ	uared = 0%	(0, 79)				
Weights are from ra	indom effec	ts analysis				
				.3	1 3.89 15	і 60

Baker, M.A., Harries, A.D., Jeon, C.Y. et al. The impact of diabetes on tuberculosis treatment outcomes: A systematic review. BMC Med 9, 81 (2011). https://doi.org/10.1186/1741-7015-9-81

Adjusted odds of death for TB patients with DM compared with TB patients without DM.

Baker, M.A., Harries, A.D., Jeon, C.Y. et al. The impact of diabetes on tuberculosis treatment outcomes: A systematic review. BMC Med 9, 81 (2011). https://doi.org/10.1186/1741-7015-9-81

AUTHOR	99 age	41	weight					HR [95%CI]	p value
Control g	roup (TB patients)	Exp. Gro	up (TB-D	M patients)					
Sahakyan et al, 2020	1.88	11.11	5.21	300	•			0.36[0.23-0.53]	<0.01
Lee et al, 2017	0.39	0.42	12.71			•		0.87[0.63-0.97]	<0.01
Siddiqui et al, 2016	1.95	5.41	6.41 -					0.28[0.11-0.56]	<0.01
Yoon et al, 2016	0.66	5.38	11.21					0.45[0.22-0.71]	<0.01
Delgado-Sánchez et al, 2015	14.5	21.2	4.3					0.34[0.14-0.64]	<0.01
HONGGUANG et al, 2015	0.53	3.3	13.12					0.29[0.12-0.48]	<0.01
Vijay et al, 2013	0.67	4.17	5.28					0.42[0.28-0.69]	<0.01
KV et al, 2013	3.62	4.8	7.29			-		0.85[0.72-0.98]	<0.01
Jiménez-Corona et al, 2012	2.24	4.68	3.19	5-3 				0.53[0.28-0.83]	<0.01
Adane et al, 2023	56.25	43.75	12.16	12 				0.35[0.21-0.59]	<0.01
Chiang et al, 2015	2.47	3.37	6.36					0.75[0.44-0.87]	<0.01
Magee et al, 2015	23.58	28.13	8.76					0.31[0.14-0.49]	<0.01
Perez-Navarro et al, 2017	22.08	19.43	4					0.23[0.17-0.38]	<0.01
hetrogeniety I²= 61%, overall effect p<0.001	sise z=39.52,		100		•			0.46[0.27-0.67]	<0.01
0.	01 0.03	3	0.07	0.20	0.54	1.48	4.01		

Rehman AU, Khattak M, Mushtaq U, et al. The impact of diabetes mellitus on the emergence of multi-drug-resistant tuberculosis and treatment failure in TB-diabetes comorbid patients: a systematic review and meta-analysis. Front Public Health. 2023;11:1244450.

Impact of DM on TB treatment failure rates

Impact of Malnutrition on TB Outcomes

Malnutrition: Definition

Broadly defined by WHO as deficiencies or excesses in nutrient intake, an imbalance of essential nutrients or impaired nutrient utilization.

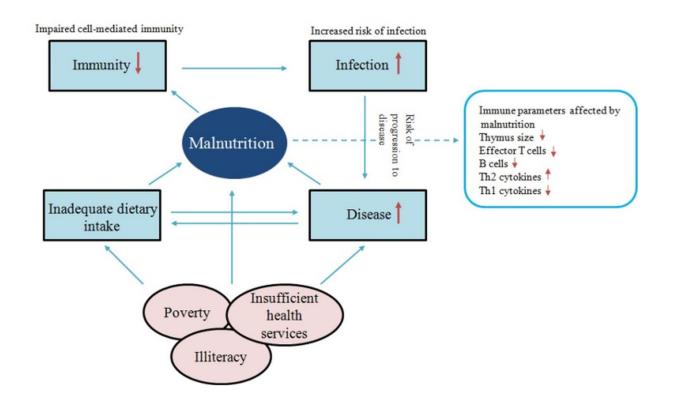
A spectrum of nutrition-related states from undernutrition to overweight and obesity.

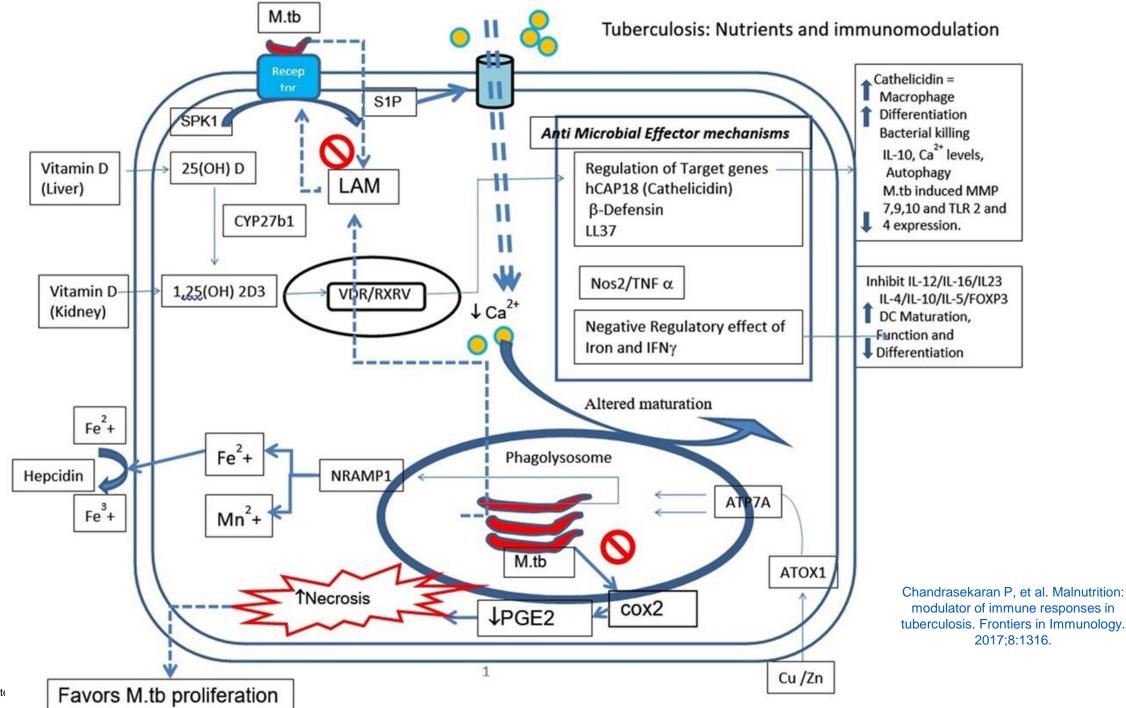
In practice, malnutrition is often used as a synonym for undernutrition in both academic literature and clinical discourse.

Malnutrition and Tuberculosis Key Facts

Malnutrition is the leading attributable risk factor for tuberculosis (TB) infection.

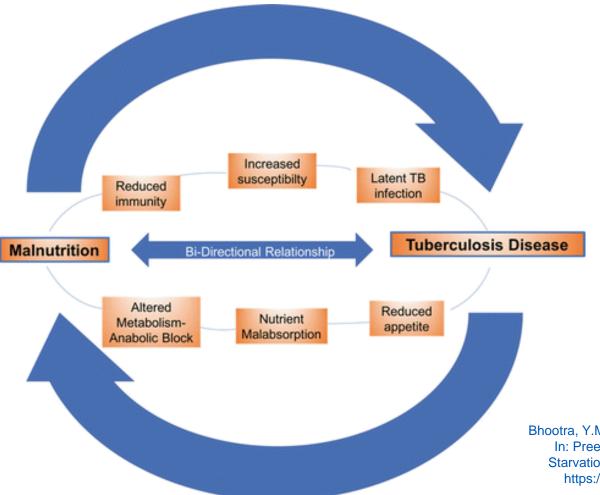
The risk of acquiring TB increases by 13.8% for each unit decrease in body mass index (BMI).

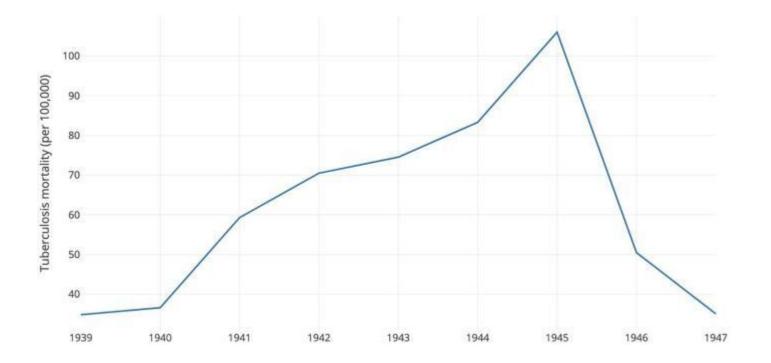

Malnutrition is also a risk factor for conversion from latent TB to active disease.


Malnourished TB patients experience poorer treatment outcomes.

Malnourished patients are twice as likely to die from TB compared with non-malnourished patients.

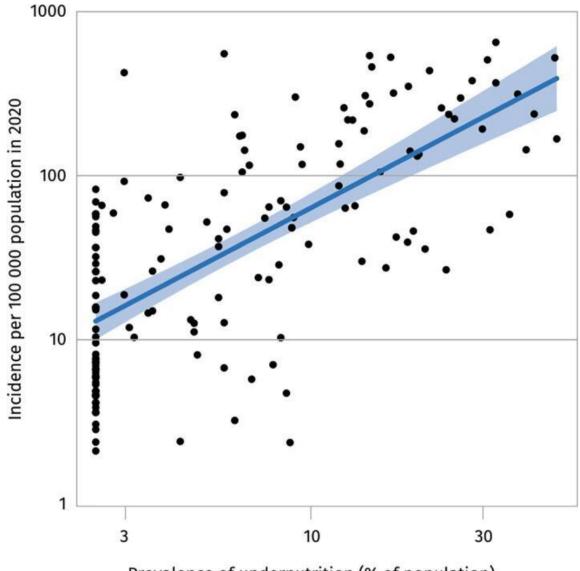
Tuberculosis and malnutrition. World Health Organization 2024


Relationship between malnutrition, infection and immunity

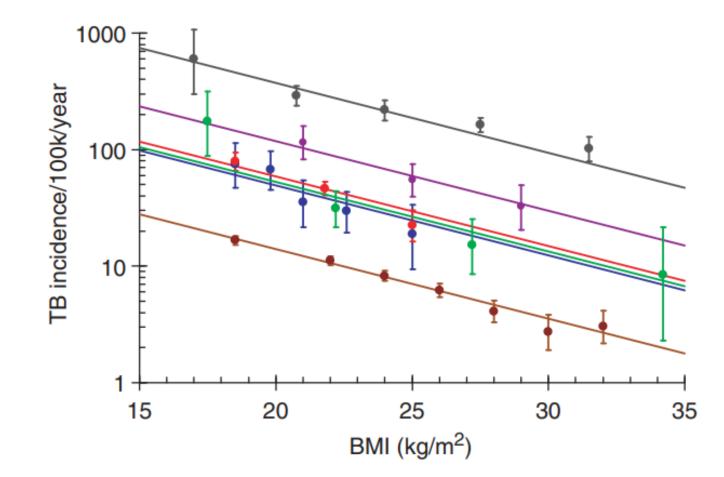


Mayo Clinic Cente

Relationship between malnutrition, and Tuberculosis



Bhootra, Y.M., Babu, S. (2018). Malnutrition in Tuberculosis. In: Preedy, V., Patel, V. (eds) Handbook of Famine, Starvation, and Nutrient Deprivation. Springer, Cham. https://doi.org/10.1007/978-3-319-40007-5_97-1


Tuberculosis Mortality in Amsterdam

DANIELS M. Tuberculosis in Europe during and after the second world war. Br Med J. 1949;2(4636):1065-1072. doi:10.1136/bmj.2.4636.1065

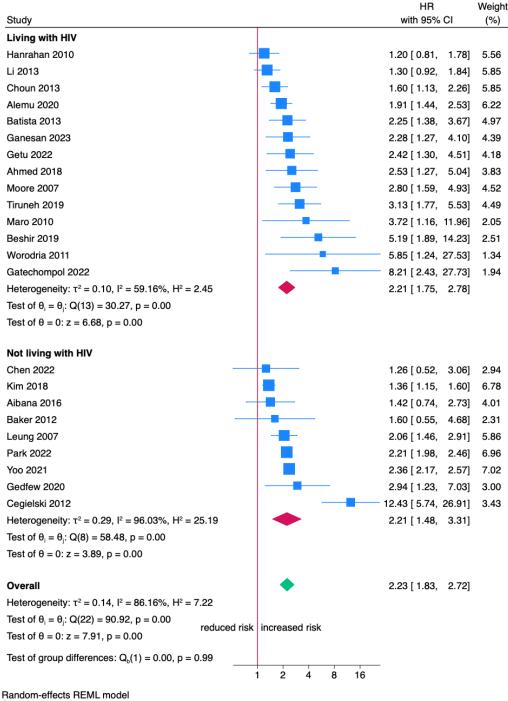
Prevalence of undernutrition (% of population)

Global Tuberculosis Report 2021

Lönnroth, Knut, et al. "A consistent log-linear relationship between tuberculosis incidence and body mass index." International journal of epidemiology 39.1 (2010): 149-155.

Hazard ratio of the risk of incident TB disease due to undernutrition.

Franco JVA, et al. Undernutrition as a risk factor for tuberculosis disease. Cochrane Database of Systematic Reviews 2024, Issue 6. Art. No.: CD015890. DOI: 10.1002/14651858.CD015890.pub2.


Mayo Clinic Center for Tuberculosis

Study		HR with 95% CI	Country	ROB1	ROB2	ROB3	ROB4	ROB5	ROE
A: < 10 years			,						
Hanrahan 2010 -	—	1.20 [0.81, 1.78]	South Africa	0				0	
Chen 2022			China		ě	ě	Õ	Õ	ŏ
Li 2013 -	-	1.30 [0.92, 1.84]	Tanzania	0	0	Õ	0		Ó
Kim 2018		1.36 [1.15, 1.60]			Õ	Õ	Õ	Õ	Ő
Aibana 2016		1.42 [0.74, 2.73]		Õ	Õ	Õ	Ó		Ĩ
Baker 2012		1.60 [0.55, 4.68]				Õ	Õ	0	
Choun 2013		1.60 [1.13, 2.26]		Õ	ě		Ó	Ó	Ó
Alemu 2020	-	1.91 [1.44, 2.53]		0	0	•	0	0	
Leung 2007		2.06 [1.46, 2.91]	China	0		•	•	0	
Park 2022		2.21 [1.98, 2.46]					0	0	
Batista 2013		2.25 [1.38, 3.67]	Brazil	0	0		0	0	0
Ganesan 2023			Subsaharan Africa	0	•	•	•	0	
Yoo 2021		2.36 [2.17, 2.57]		•	•	0	0	0	
Getu 2022		2.42 [1.30, 4.51]	Ethiopia	0	•	•	0	0	6
Ahmed 2018		2.53 [1.27, 5.04]	Ethiopia	0	0	0	0	0	6
Moore 2007		2.80 [1.59, 4.93]	Uganda	0	•	•	0	0	0
Gedfew 2020	_	2.94 [1.23, 7.03]	Ethiopia	0	0		0	0	
Tiruneh 2019		3.13 [1.77, 5.53]	Ethiopia	0	0		0	0	6
Maro 2010		3.72 [1.16, 11.96]	Tanzania	0	۲			0	(
Beshir 2019		5.19 [1.89, 14.23]	Ethiopia	0	0		0	•	
Worodria 2011		5.85 [1.24, 27.53]	Uganda	0	0		0	0	0
Gatechompol 2022		8.21 [2.43, 27.73]	Thailand	0	•		0	0	
Heterogeneity: τ² = 0.06, l² = 71.55%, H² = 3.52		2.02 [1.74, 2.34]							
Test of $\theta_i = \theta_i$: Q(21) = 70.50, p = 0.00									
Test of $\theta = 0$: z = 9.30, p = 0.00									
B: 10 or more years									
Cegielski 2012		12.43 [5.74, 26.91]	USA		0		0	0	
Heterogeneity: $\tau^2 = 0.00$, $I^2 = .\%$, $H^2 = .$		12.43 [5.74, 26.91]							
Test of $\theta_i = \theta_i$: Q(0) = -0.00, p = .									
Test of $\theta = 0$: $z = 6.39$, $p = 0.00$									
Overall	—	2.23 [1.83, 2.72]							
Heterogeneity: $\tau^2 = 0.14$, $I^2 = 86.16\%$, $H^2 = 7.22$									
Test of $\theta_i = \theta_j$: Q(22) = 90.92, p = 0.00	increased rist.								
Test of $\theta = 0$: z = 7.91, p = 0.00 reduced risk	increased risk								
Test of group differences: $Q_b(1) = 20.51$, p = 0.00		-							
	2 4 8 16								

Sorted by: _meta_es 95% prediction intervals

Subgroup analysis by HIV status for the risk of incident TB disease due to undernutrition

Franco JVA, et al. Undernutrition as a risk factor for tuberculosis disease. Cochrane Database of Systematic Reviews 2024, Issue 6. Art. No.: CD015890. DOI: 10.1002/14651858.CD015890.pub2.

Sorted by: _meta_es

Nutritional Interventions and TB Outcomes

Increased calorie and protein intake can improve recovery from TB recovery

Nutritional support for TB patients was shown to increase treatment compliance.

Tuberculosis and malnutrition. World Health Organization 2024

Nutritional Assessment

Taking a nutrition-oriented history and examination

Anthropometric assessment such as BMI

Dietary assessment

Laboratory assessment, e.g. albumin, micronutrients (e.g., vitamin D, zinc)

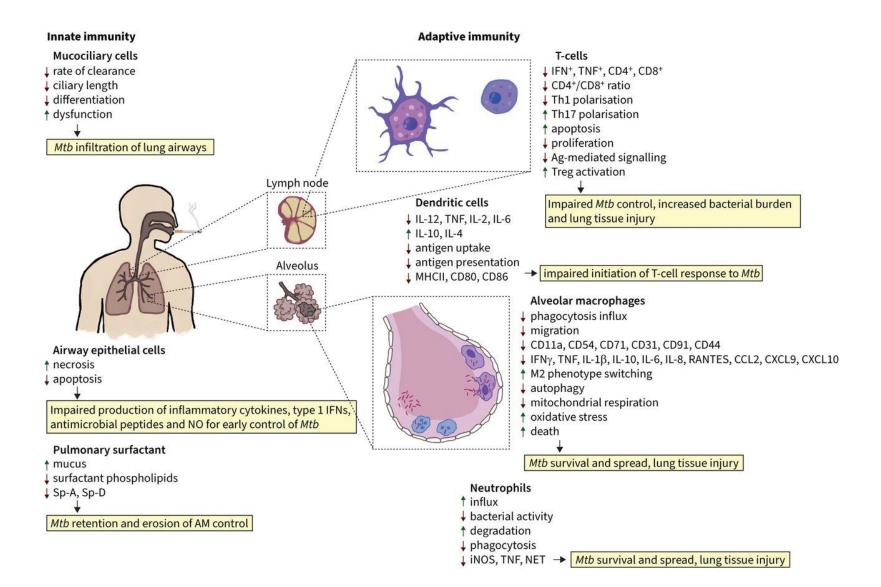
Tuberculosis and malnutrition. World Health Organization 2024

Initial Assessment

Comprehensive Nutritional History

- Dietary intake,
- Weight history
- Potential barriers to adequate nutrition

Physical Examination: Identify signs of malnutrition

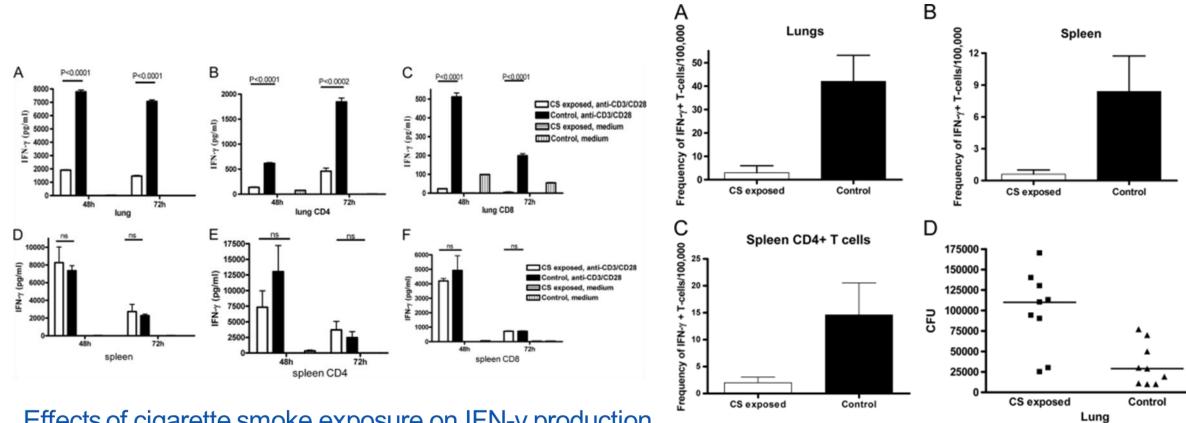

- Muscle wasting
- Edema

Impact of Smoking on TB Outcomes

Mayo Clinic Center for Tuberculosis

The impact of cigarette smoking on tuberculosis

- Increased risk of TB infection and active TB disease
- Delay in TB diagnosis
- Increased duration of culture positivity, higher bacillary loads, prolonged smear and culture positivity
- Increased progression of primary tuberculosis
- Increased severity of TB, more extensive pulmonary disease, more lung cavitation, greater need for hospitalization, and more prolonged hospitalization.
- TB treatment failure, recurrence of disease after successful treatment with anti-TB drugs, Treatment interruption, a negative effect on treatment completion, treatment default, treatment loss to follow-up
- Higher mortality
- Increased costs for the patient and the healthcare system.

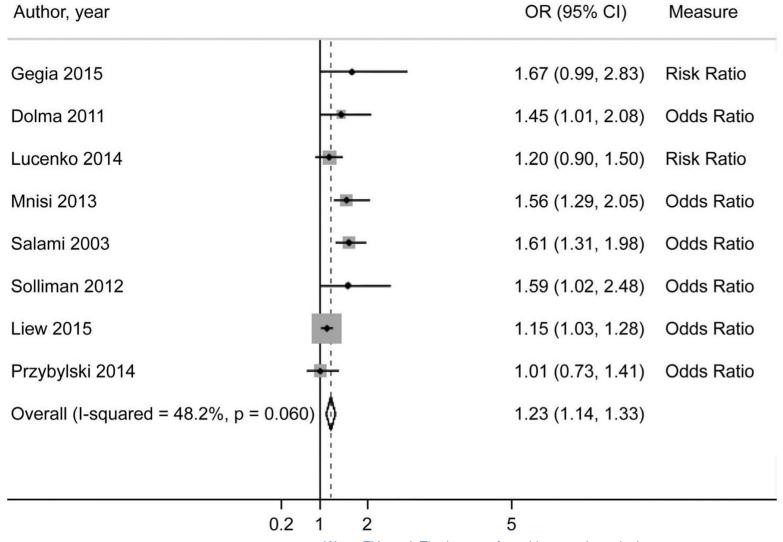


The effects of cigarette smoke exposure on innate and adaptive immunity that may influence the control of Mycobacterium tuberculosis infection.

Mechanisms by which cigarette smoke and its nicotine constituent suppress alveolar macrophage anti-mycobacterial activity.

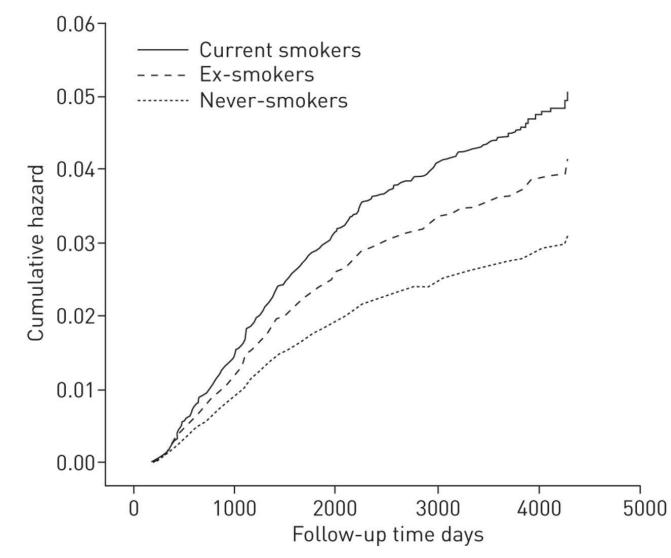
Impaired Alveolar Macrophage Function	Type of Study	Mechanism	
Antimicrobial activity	Alveolar macrophages isolated from the lungs of smokers exposed to cigarette smoke extract in vitro	Attenuation of autophagolysosome formation due to failure of recruitment autophagy adaptors	
Antimicrobial activity	Isolated lung macrophages from smokers exposed to <i>M. tuberculosis</i> in vitro	Failure of glycolytic reprogramming associated with decreased expression of genes encoding GLUT-1 as well as glycolysis-mediated activation of the NLRP3 inflammasome-IL-1β- maturation and release pathway	
Phagocytosis	In vitro exposure of a macrophage cell line to cigarette smoke extract	Decreased expression of the PAMPs, TLR2 and MARCO	
Phagocytosis	In vitro study using blood monocytes isolated from patients with long-term cigarette smoking-related active tuberculosis	Upregulated expression of the regulatory miRNA, mi-R-196b- 5p, resulting in activation of suppressive STAT3	Feld
Antimicrobial activity	In vitro study involving smoke- exposed murine macrophages and macrophage cell lines depleted of nAChR or exposed to pure nicotine	Nicotine-mediated defective autophagosome formation due to inhibition of NFkB and activation of Tregs	a Ris Epid Path 13(2

Feldman C, et al. Cigarette Smoking as a Risk Factor for Tuberculosis in Adults: Epidemiology and Aspects of Disease Pathogenesis. Pathogens. 2024; 13(2):151.



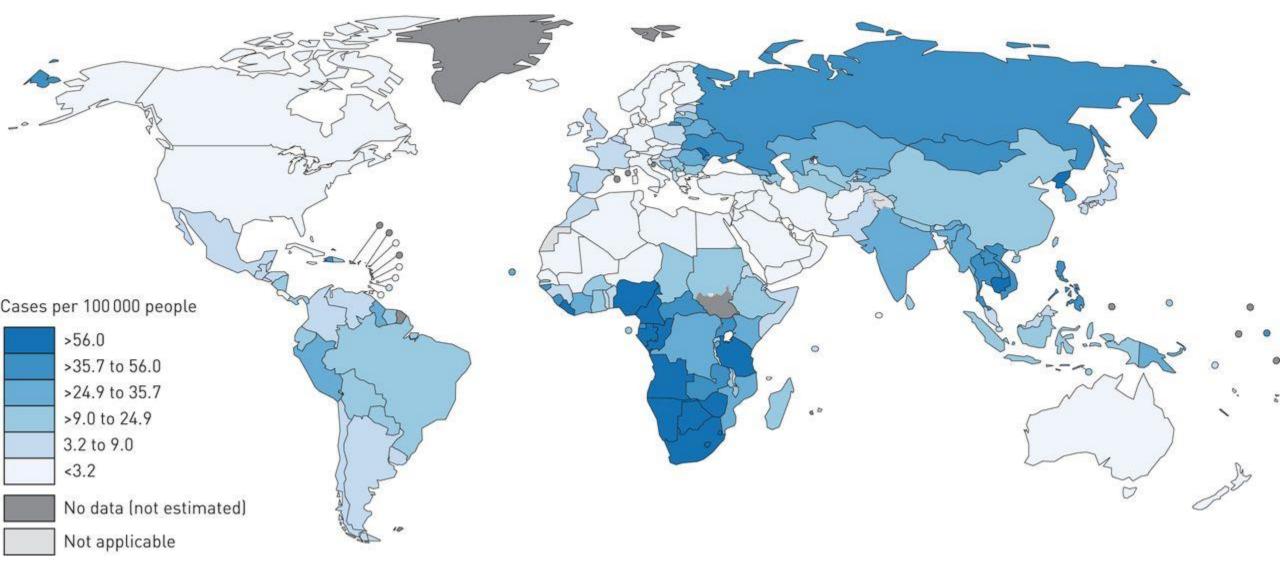
Effects of cigarette smoke exposure on IFN-y production

Effects of cigarette smoke exposure on MTB bacterial burden and T cell response

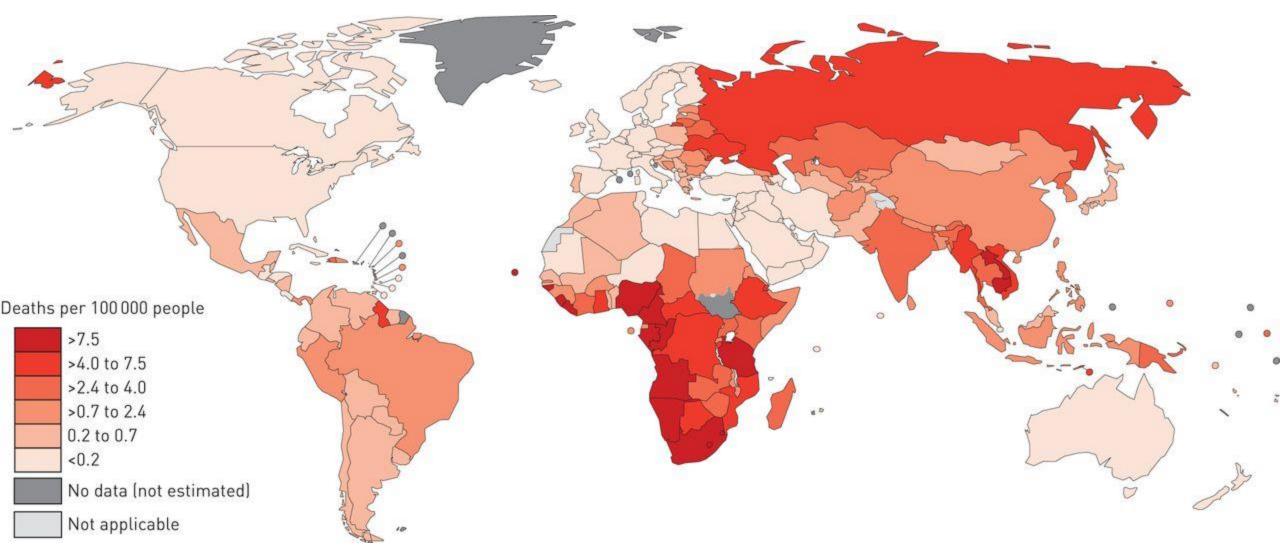

Feng Y, et al. Exposure to cigarette smoke inhibits the pulmonary T-cell response to influenza virus and Mycobacterium tuberculosis. Infect Immun. 2011;79(1):229-237. doi:10.1128/IAI.00709-10

Pooled effect estimate of current smokers and unfavorable treatment outcomes

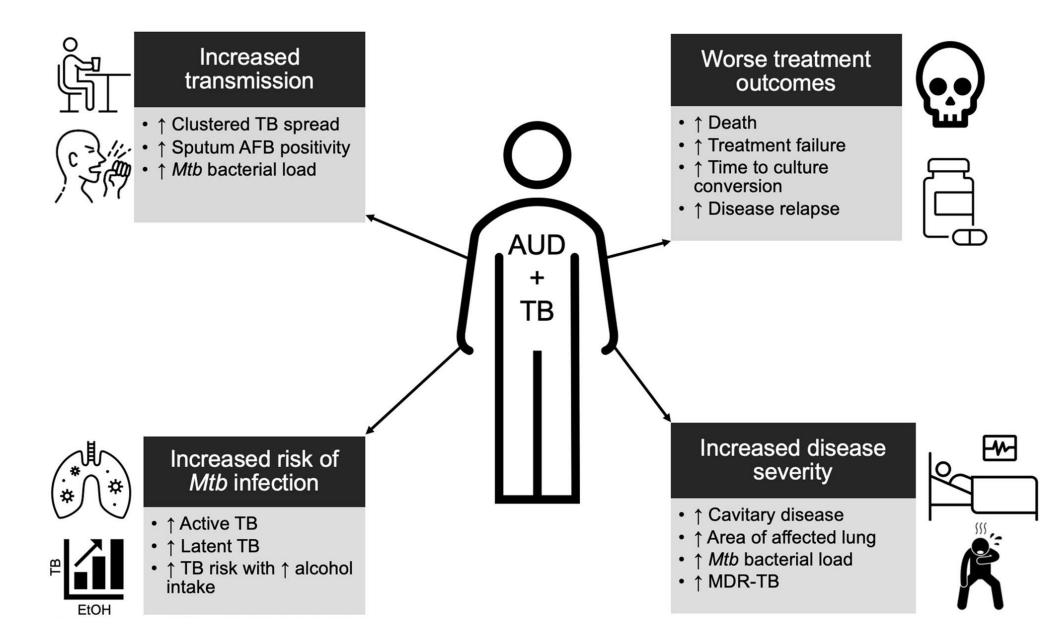
Wang EY, et al. The impact of smoking on tuberculosis treatment outcomes: a meta-analysis. Int J Tuberc Lung Dis. 2020;24(2):170-175. doi:10.5588/ijtld.19.0002


Cumulative hazards for tuberculosis relapse by smoking status

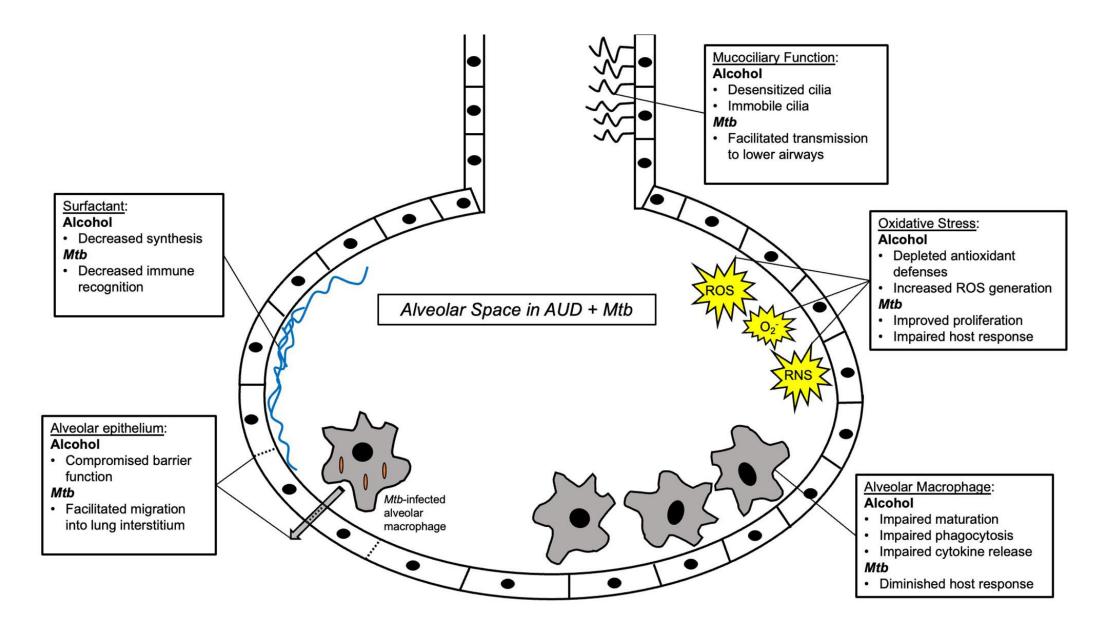
Leung CC, et al. European Respiratory Journal 2015 45(3): 738-745; DOI: https://doi.org/10.1183/09031936.00114214

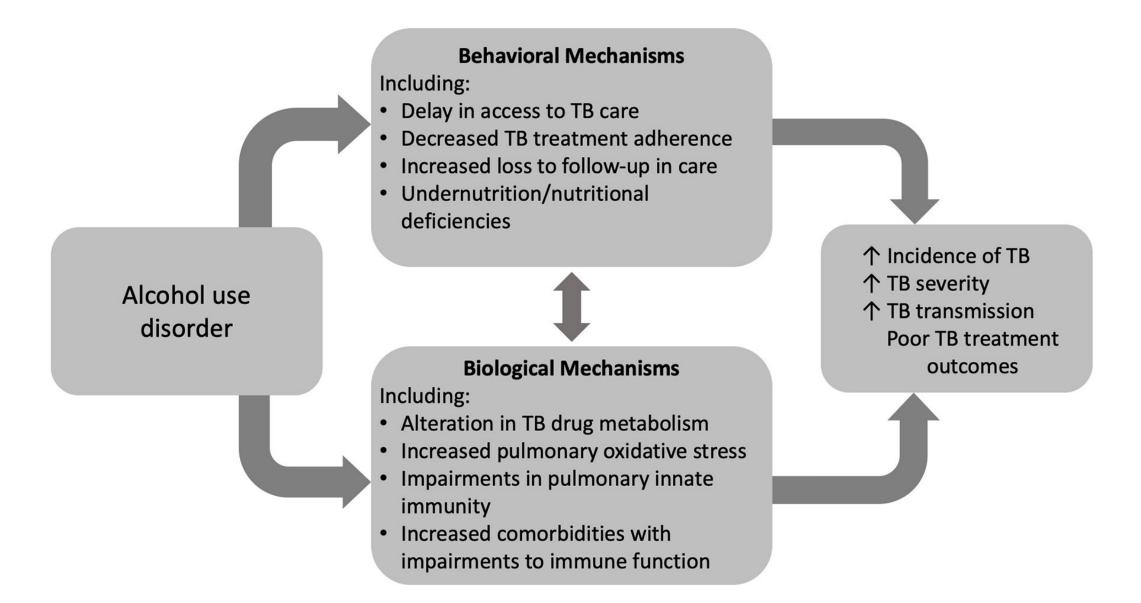

Impact of Alcohol Use on TB Outcomes

Estimated tuberculosis incidence rates per 100 000 people attributable to alcohol consumption by countries in 2014



Imtiaz S, et al. Alcohol consumption as a risk factor for tuberculosis: meta-analyses and burden of disease. European Respiratory Journal 2017 50(1): 1700216; DOI: https://doi.org/10.1183/13993003.00216-2017


Estimated tuberculosis mortality rates per 100 000 people attributable to alcohol consumption by countries in 2014



Imtiaz S, et al. Alcohol consumption as a risk factor for tuberculosis: meta-analyses and burden of disease. European Respiratory Journal 2017 50(1): 1700216; DOI: https://doi.org/10.1183/13993003.00216-2017

Wigger GW, et al. The Impact of Alcohol Use Disorder on Tuberculosis: A Review of the Epidemiology and Potential Immunologic Mechanisms. Front Immunol. 2022;13:864817. doi:10.3389/fimmu.2022.864817

4	Alcoho	Igroup	Non-alco	hol group		
Author, year	Event	Total	Event	Total		OR [95% CI]
OS-TB						
Ambrosetti, 1999A	7	24	107	642	⊢	2.06 [0.83, 5.09
Ambrosetti, 1999B	7	33	108	705		1.49 [0.63, 3.51
Ambrosetti, 1999C	5	38	91	750		1.10 [0.42, 2.88
Bhagat, 2010	17	42	7	55	· · · ·	4.66 [1.71, 12.73
Bumburidi, 2006*	-	762	-	18203		3.20 [2.80, 3.70
Centis, 2000	10	35	139	833	L	2.00 [0.94, 4.25
Centis, 2002	2	19	104	764	· · · · · ·	0.75 [0.17, 3.28
Chiang, 2012	36	88	74	214	· .	1.31 [0.79, 2.18
De Albuquerque, 2007*	-	-	-	-		1.79 [1.21, 2.66
Diel, 2003	61	127	41	391		7.89 [4.91, 12.69
Ismail, 2013	29	54	21	113		5.08 [2.49, 10.39
Jain, 2016	10	52	21	189		1.90 [0.83, 4.35
Kim, 2007	116	182	90	166		1.48 [0.97, 2.28]
Kittikraisak, 2009	45	386	16	168		1.25 [0.69, 2.29]
Lillebaek, 1999	14	48	45	227	, <u> </u>	1.67 [0.82, 3.36
Lin, 2015	29	122	619	2200		0.80 [0.52, 1.22
Magee, 2015	16	48	10	82		3.60 [1.47, 8.79
Pimchan, 2012	21	55	101	340		
	-	534	-	1491		1.46 [0.81, 2.64
Przybylski, 2014*	171	742	93		— —	1.74 [1.29, 2.36
Ramachandran, 2017			93	1170		3.47 [2.64, 4.55
Santha, 2002	55	146		435		2.42 [1.61, 3.64
Siemion-Szczesniak, 2012A	37	73	45	232		4.27 [2.43, 7.50
Siemion-Szczesniak, 2012B	24	61	56	200	HH	1.67 [0.92, 3.04
Tabarsi, 2012	18	53	23	58		0.78 [0.36, 1.70
Volkmann, 2014	2569	27145	12488	155897		1.20 [1.15, 1.26]
Random-effects model (P < 0.001;	I ² = 93%)				•	1.99 [1.57, 2.51]
/IDR-TB						
Aibana, 2017	56	67	227	281	⊢ ∔•—-1	1.21 [0.59, 2.47]
Cox, 2007	10	20	23	67	⊢	1.91 [0.70, 5.26
De Albuquerque, 2001	42	151	19	135		2.35 [1.29, 4.29
Gadallah, 2016	11	21	59	207		2.76 [1.11, 6.84
Gegia, 2012	51	94	128	286	<u> </u>	1.46 [0.92, 2.34
Gegia, 2015	20	104	29	175		1.20 [0.64, 2.25
Jain, 2014	22	27	50	103		4.66 [1.64, 13.26
Jeong, 2015	6	33	59	304		0.92 [0.36, 2.34
Kendall, 2013	74	131	29	78		2.19 [1.23, 3.90
Kuksa, 2014	36	64	27	68		1.95 [0.98, 3.90
	207	489	121	478		
Kurbatova, 2012 Leimane, 2010	122	479	62	478		2.17 [1.65, 2.85
						1.87 [1.33, 2.63
Magee, 2014	57	86	451	967		2.25 [1.41, 3.58
Miller, 2012	126	253	34	154		3.50 [2.22, 5.51
Oliveira, 2013	22	61	63	196		1.19 [0.65, 2.18
Prajapati, 2017	19	20	60	88	► ► ►	8.87 [1.13, 69.59
Scuffell, 2017	6	8	31	41		0.97 [0.17, 5.58
Velasquez, 2016	66	122	481	1424		2.31 [1.59, 3.35
Random-effects model (P < 0.001;	/² = 32%)				•	2.00 [1.73, 2.32
* Counts unavailable						
					0.15 0.5 1 2 5 15	

OR

Meta-analysis results for poor treatment outcomes

Treatment outcome	Studies <i>n</i>	Summary effect estimate	95% CI
Poor outcome A*	25	1.99	1.57–2.51
Poor outcome B ⁺	12	2.55	1.77–3.66
Death	22	1.58	1.24–2.00
Treatment failure	13	3.12	1.83–5.33
LTFU	29	2.25	1.74–2.91

B) Meta-analysis results for poor treatment outcomes, studies on mu

Treatment outcome	Studies <i>n</i>	Summary effect estimate	95% CI
Poor outcome A* Poor outcome B ⁺ Death Treatment failure	18 10 6 4	2.00 1.47 1.38 1.54 1.87	1.73–2.32 1.06–2.05 1.04–1.83 1.09–2.17 1.56–2.24

Ragan EJ, et al. The Impact of Alcohol Use on Tuberculosis Treatment Outcomes: A Systematic Review and Meta-Analysis. Int J Tuberc Lung Dis (2020) 24(1):73–82. doi: 10.5588/ijtld.19.0080

Tuberculosis and Comorbidities

Several medical conditions are risk factors for TB and for poor TB treatment results.

Identifying these conditions in people diagnosed with TB and providing the appropriate interventions will improve the outcomes of both these conditions and TB

Many of these conditions are highly prevalent in the general population.

Reducing the prevalence of these conditions can help prevent TB.

Thank you