TB Prevention: Let’s Move Beyond Only Using INH for Prevention

Chris Keh, MD
TB Controller, TB Prevention and Control Program, San Francisco Department of Public Health
Assistant Clinical Professor, Division of Infectious Diseases, University of California, San Francisco
PITCA, September 13, 2017
Disclosures

• I will be presenting on investigational or off-label use of rifabutin for LTBI treatment.
Objectives

• Identify three treatment regimens for tuberculosis infection.

• Identify common side effects and monitoring with rifampin in order to improve patient outcomes.

• Identify common drug-drug interactions with rifampin in order to improve patient safety.
Span of TB Control Activities in San Francisco 2014- update for PI or delete

- 114 San Franciscans with TB Disease
- Over 400 TB suspect cases
- 1,100 Contacts to TB Cases
- 78,000 San Franciscans with TB Infection
- 850,000 San Franciscans

TB Control

TB Elimination
How far are we from elimination?- update for PI or delete

<table>
<thead>
<tr>
<th>TB elimination: <1 case per million</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States, 2013</td>
</tr>
<tr>
<td>30 cases per million (all)</td>
</tr>
<tr>
<td>12 cases per million (U.S. born)</td>
</tr>
<tr>
<td>156 cases per million (foreign-born)</td>
</tr>
</tbody>
</table>

| **San Francisco, 2013** |
| 1360 cases per million (all) |
| 23 cases per million (U.S. born) |
| 3510 cases per million (foreign-born) |

www.cdc.gov, Reported Tuberculosis in the United States, 2013
Incidence Projections to 2060 - simplify slide

- Cut in transmission
- Increase LTBI treatment, 2x or 4x more

Reduce FB arrivals with LTBI by 50%
Reduce FB arrivals with LTBI by 75%

Hill et al., Epidemiol Infect, 2012
INH + Rifapentine (3HP)

- INH + Rifapentine, Qweek x 12 weeks
- Recommended as an equal alternative to INH x 9 mo in healthy patients ≥12 yo and HIV-infected patients not on ART.
- Not recommended in the following:
 - Children <2yo
 - HIV-infected patients on any ART
 - Pregnant or planning to become pregnant
 - Contact to INH/RIF resistant cases
 - Prior adverse events / hypersensitivity to INH/RIF

Recommendations for Use of an Isoniazid–Rifapentine Regimen with Direct Observation to Treat Latent Mycobacterium tuberculosis Infection. MMWR 2011;60:1650–1653
Dosing- 3HP

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage</th>
<th>Maximum dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>INH</td>
<td>15 mg/kg rounded to nearest 50/100 mg in patients ≥ 12 years</td>
<td>900 mg</td>
</tr>
<tr>
<td></td>
<td>25 mg/kg rounded to the nearest 50/100 mg in patients 2-11 years</td>
<td></td>
</tr>
<tr>
<td>Rifapentine</td>
<td>10.0 – 14.0 kg = 300 mg</td>
<td>900 mg</td>
</tr>
<tr>
<td></td>
<td>14.1 – 25.0 kg = 450 mg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25.1 – 32.0 kg = 600 mg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32.1 – 49.9 kg = 750 mg</td>
<td></td>
</tr>
</tbody>
</table>

Rifapentine tablets can be crushed and administered with semi-solid food for children unable to swallow pills

DOT- 3HP

• Current CDC recommendations: DOT for 3HP

• Recent CDC-sponsored study (TBTC Study 33, data still to be published) suggests self-administered treatment (SAT) is non-inferior to DOT in the US

• Study design for SAT: some pts received SMS reminders, not all doses were SAT (first dose and monthly visits were witnessed when able), only 4 SAT doses were dispensed at a time
Side effects - 3HP

- Possible hypersensitivity (3.8%)
- Rash (0.8%)
- Hepatotoxicity (0.4%)
- Thrombocytopenia (rare)
- Other toxicities (3.2%)

- Monitoring - similar to INH or RIF
- RFP drug-drug interactions similar to RIF

Three Months of Rifapentine and Isoniazid for Latent Tuberculosis Infection

<table>
<thead>
<tr>
<th></th>
<th>INH-RPT</th>
<th>INH</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients</td>
<td>3,986</td>
<td>3,745</td>
</tr>
<tr>
<td>Administration</td>
<td>Directly-observed therapy</td>
<td>Self-administered therapy</td>
</tr>
<tr>
<td>Frequency</td>
<td>Weekly</td>
<td>Daily</td>
</tr>
<tr>
<td>Duration</td>
<td>12 weeks</td>
<td>9 months</td>
</tr>
</tbody>
</table>

Prevent TB Study Results

<table>
<thead>
<tr>
<th></th>
<th>INH-RPT</th>
<th>INH</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effectiveness</td>
<td>1.9 per 1,000</td>
<td>4.3 per 1,000</td>
<td>Non-inferior</td>
</tr>
<tr>
<td>Completion rate</td>
<td>82.1%</td>
<td>69.0%</td>
<td>P<0.001</td>
</tr>
<tr>
<td>Hepatotoxicity</td>
<td>0.4%</td>
<td>2.7%</td>
<td>P<0.001</td>
</tr>
</tbody>
</table>

Which of the following are reasons to choose rifampin for LTBI treatment in a patient?

A. Exposure to INH-resistant TB
B. Allergy to INH
C. INH-induced hepatotoxicity
D. RIF more effective than INH
E. All of the above
F. A, B, and C only
Current recommendations

• Consider 4 month regimen of RIF (4R) in*:
 • Patients with INH intolerance
 • Contacts to INH-resistant TB
 * 6 months for pediatrics

• Targeted Tuberculin Testing and Treatment of Latent Tuberculosis Infection. MMWR 2000; 49 (No. RR-6)
Monitoring

ATS/CDC LTBI guidelines, 2000

• Routine baseline / follow-up laboratory testing
 ➔ Not needed

• Except for:
 • HIV infection
 • Pregnancy / Early postpartum (<3mo)
 • History of liver disease / hepatitis
 • Regular EtOH use
Also consider for: Statin/other hepatotoxic meds, age >50
Which one of these is NOT a common side effect of Rifampin?

A. Orange discoloration of urine
B. Rash
C. Gout
D. Elevated bilirubin
Adverse Effects

• Hepatotoxicity
 • Rare severe hepatitis, more common when combined with other medications
• Asymptomatic hyperbilirubinemia (0.6%)
• Dermatologic: Pruritis, rash (up to 6%)
• Hypersensitivity reaction (0.07-0.3%)
• GI: nausea, anorexia, abdominal pain
• Immune-mediated: thrombocytopenia, TTP, hemolytic anemia (<0.1%)
• Orange discoloration of body fluids
Monitoring

Evaluate **monthly** for:

• Adherence

• Symptoms of hepatitis or other side effects
 • Anorexia, nausea, vomiting, or abdominal pain in right upper quadrant
 • Fatigue or weakness
 • Dark urine
 • Rash
 • Persistent numbness in hands or feet
Management of side effects: Drug-induced liver injury

- Review hepatotoxic meds (tylenol, statins, etc), ETOH use, prior hepatitis risk/screen
- HOLD Treatment if:
 - AST/ALT > 3 times the upper limit of normal + symptoms of hepatotoxicity
 - AST/ALT > 5 times the upper limit of normal + asymptomatic
- If less than parameters above, continue treatment with plan to repeat labs in 1-4 weeks.
- Depending on above, consider alternate therapy with close LFT monitoring.
Management of Side Effects: Derm

- Fixed drug eruption
- Rash, itching (1-5%, RIF)
- Pemphigoid reaction
- DRESS
- Anaphylaxis, urticaria

- **Mild**: anti-histamine, topical steroids, f/u visit
- **Mild-moderate**: hold meds and above, consider re-challenge once resolves
- **Mod-severe**: hold meds and above, emergency care / derm consult as needed. Consider alternate therapy once resolves
ARS: 65 yo HIV+ M with HTN, diabetes, hypothyroidism. Which of these diseases may have treatments with rifampin drug-drug interactions?

A. HTN
B. Diabetes
C. Hypothyroidism
D. HIV
E. All of the above
Drug-Drug Interactions

Requires re-dosing or alternate:
- Coumadin
- Opioids (e.g. Methadone)
- Antiretrovirals
- OCP’s
- Proton-pump Inhibitor
- Chemotherapy
 - Cyclosporine
 - Tacrolimus
 - Tamoxifen

Monitor and titrate:
- Endo:
 - Levothyroxine
 - Corticosteroids
 - sulfonylureas
- CNS
 - Benzodiazepines
 - Phenytoin, lamotrigine
 - SSRI
- Cardiac
 - Statins
 - Anti-HTN: b-blocker, ACE-I, ARB, Ca-channel blockers
Rifamycin: Drug-drug Interaction

• Rifabutin is a less potent potent inducer of CYP3A4 than rifampin. Thus, can be considered in certain cases with close monitoring (methadone, anti-coagulation, anti-retrovirals)

Resources:
• Lexicomp / Micromedex Drug Interaction Look-up
Do you use rifampin for LTBI treatment in your practice/program?

A. Yes
B. Yes, but we only use it in combo (RIF+INH) or in cases of INH resistance/intolerance
C. No
D. I don’t know
Pros / Cons Rifampin

<table>
<thead>
<tr>
<th>Potential Benefit</th>
<th>Potential Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorter duration</td>
<td>Development of resistance</td>
</tr>
<tr>
<td>Decreased hepatotoxicity</td>
<td>Increased immune phenomenon (anemia, rash)</td>
</tr>
<tr>
<td>Cost</td>
<td>Cost</td>
</tr>
<tr>
<td></td>
<td>Efficacy data limited</td>
</tr>
</tbody>
</table>
Need for more data

• Cost
• Efficacy
• Adherence
• Adverse events
• Development of resistance
• HIV
• Pediatrics
Efficacy of 3R in silicosis

- RCT, n= 679
- Silicosis, PPD+
 - PI- placebo
 - HR3- INH/RIF x 3 mo
 - H6- INH x 6 mo
 - R3- RIF x 3 mo

- Active pulmonary TB more frequent in placebo vs chemoprophylaxis groups (p<0.01)
- No significant difference between 3 chemoprophylaxis regimens

Efficacy of 3R in silicosis

- Limitations- regimens self-administered
- Serum ALT significantly higher in H6 and HR3 compared to R3 (p<0.001)
- Similar freq adverse effects in all 4 groups
- No evidence of development of drug resistance

Normal ALT <28 IU/L)
Epidemic of INH/SM-resistance in Boston’s homeless, 1984
204 TST converters eligible for LTBI treatment
Mean follow-up periods ranged from 23.5-31.2 months for the 4 groups
3 cases of active in INH group were INH-resistant

Efficacy: Phase 3 RCT

- Multi-center Phase 3 RCT: 4R vs 9H
- Results expected in 2017
- Study sites: Canada, Australia, Benin, Brazil, Ghana, Guinea, Indonesia, Korea, Saudi Arabia

Objectives:
- Effectiveness- incidence of confirmed active TB within 28 months post-randomization
- Efficacy- incidence of confirmed active TB in those who took at least 80% of doses within allowed time
- Serious adverse events

Menzies, D. 4 Months of Rifampin for the Treatment of LTBI. As presented at National TB Controller’s Association Conference, Atlanta, GA, June 11, 2014
Cost-effectiveness

- Costs estimated based on open-label RCT (visits, labs, meds)

- If 4R efficacy > 74%: 4R would be cheaper and would prevent more cases than INH

- If 4R efficacy > 65%: 4R would be cheaper than INH

Cost-effectiveness

• Computerized model: 4R could be up to 17% less efficacious than INH and still be cost saving and more effective (Holland, et al)

• Decision-analysis model from multicenter RCT: if 4R efficacy ≥ 69%, then 4R is more cheap and effective compared to INH (Esfahani, et al)

<table>
<thead>
<tr>
<th>Study design</th>
<th>Treatment Completion: RIF vs INH</th>
<th>Adverse events: RIF vs INH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lardizabal, et al, 2006 Retrospective New Jersey N=474</td>
<td>80.5 vs 53.1 % (p<0.0001)</td>
<td>3.1% vs 5.8 % (p>0.05)</td>
</tr>
<tr>
<td>Page, et al, 2006 Retrospective Maryland N=2255</td>
<td>71.6 vs 52.6% (p<0.001)</td>
<td>Adverse events: 1.9 vs 4.6% (p<0.001) Hepatotoxicity: 0.08 vs 1.8% (p<0.001)</td>
</tr>
<tr>
<td>Menzies, et al, 2008 Randomized, open-label, multicenter (Canada, Saudi Arabia, Brazil) N=847</td>
<td>78 vs 60% (CI 12-24%, p<0.001)</td>
<td>Grade 3/4 hepatitis: 0.7 vs 3.8% (p=0.03) Decreased platelet/WBC: RIF>INH</td>
</tr>
<tr>
<td>Fresard, et al, 2011 Retrospective Switzerland N=624</td>
<td>83 vs 74% (p=0.02)</td>
<td>Hepatotoxicity: 2.0 vs 6.1% (p=0.03)</td>
</tr>
</tbody>
</table>
Hepatotoxicity: Favors RIF > INH

Adherence: Favors RIF > INH

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Rifampicin</th>
<th>INH</th>
<th>Risk Ratio</th>
<th>M.H. Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events</td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
<td>Weight</td>
</tr>
<tr>
<td>1.3.1 Rifampicin 3 to 4 months versus INH 6 to 9 months (in adults with silicosis or LTBI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chan 2012 (1)</td>
<td>163</td>
<td>160</td>
<td>142</td>
<td>133</td>
</tr>
<tr>
<td>HKCS 1992</td>
<td>142</td>
<td>165</td>
<td>123</td>
<td>167</td>
</tr>
<tr>
<td>Menzies 2004</td>
<td>53</td>
<td>58</td>
<td>44</td>
<td>55</td>
</tr>
<tr>
<td>Menzies 2008</td>
<td>328</td>
<td>420</td>
<td>255</td>
<td>427</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>833</td>
<td>835</td>
<td>80.8%</td>
<td>1.19 [1.10, 1.30]</td>
</tr>
<tr>
<td>Total events</td>
<td>686</td>
<td>564</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Tau² = 0.00; Chi² = 6.63, df = 3 (P = 0.08); I² = 55%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 4.20 (P < 0.0001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.3.2 Rifampicin 4 months versus INH 6 months (in children)

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Rifampicin</th>
<th>INH</th>
<th>Risk Ratio</th>
<th>M.H. Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events</td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
<td>Weight</td>
</tr>
<tr>
<td>Magdoff 1994</td>
<td>43</td>
<td>50</td>
<td>47</td>
<td>50</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>50</td>
<td>50</td>
<td>19.2%</td>
<td>0.91 [0.80, 1.04]</td>
</tr>
<tr>
<td>Total events</td>
<td>43</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 1.32 (P = 0.19)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| (1) Treatment of prisoners in this trial was by direct observation (except when on parole) |

Sharma SK, et al. Rifamycins (rifampicin, rifabutin and rifapentine) compared to isoniazid for preventing tuberculosis in HIV-negative people at risk of active TB. Cochrane Database Syst Rev. 2013 Jul5;7:CD007545.
Summary

• Compared to INH, rifampin appears to:
 • Be cost-effective
 • Have higher rates of treatment completion
 • Reduced rates of hepatotoxicity / adverse events

• Additional data is needed on:
 • Efficacy
 • Development/risk of resistance
 • Use in special populations (pediatrics, HIV, immunocompromised, etc)

• Results of Phase 3 clinical trial is upcoming
Treatment Completion / Adverse Events References

• Fresard I, Bridevaux PO, Rochat T, Janssens JP. Adverse effects and adherence to treatment of rifampicin 4 months vs isoniazid 6 months for latent tuberculosis: a retrospective analysis. Swiss Med Wkly. 2011 Aug 15;141:w13240.