TB Pathogenesis

What is it?

• One of the oldest recorded human afflictions
• Bone TB from individuals who died 4,000 years ago
• Assyrian clay tablets record hemoptysis 7th century BC
• Hippocrates describes symptoms of consumption from the 5th century BC
• Until mid-1800s, many believed TB was hereditary or a working man's disease

• 1865 Jean Antoine-Villemin proved TB was contagious

• 1882 Robert Koch discovered *M. tuberculosis*, the bacterium that causes TB

Mycobacterium tuberculosis

What is it?

• Caused by the Mycobacterium *M. tuberculosis*

• Small, aerobic, non-motile bacillus

• High lipid content- lipid bilayer
 - Does not stain well
 - Can live in a dry environment for weeks
 - Can withstand some disinfectants

• Divides at the slow rate of 16-20 hours.

• Can be identified under a regular light microscope.

• Most mycobacterium retain stains even after washes and therefore are called “acid-fast” bacilli or AFB

• Common staining techniques are:
 - Ziehl-Neelsen stain-bright red
 - Auramine-rhodamine stain- fluorescence microscopy
TB Pathogenesis

- TB is spread person to person through the air via droplet nuclei
- *M. tuberculosis* may be expelled when an infectious person:
 - Coughs
 - Sneezes
 - Speaks
 - Sings
- Transmission occurs when another person inhales droplet nuclei

Mycobacterium tuberculosis

What it does

- TB is spread person to person through the air via droplet nuclei
- *M. tuberculosis* may be expelled when an infectious person:
 - Coughs
 - Sneezes
 - Speaks
 - Sings
- Transmission occurs when another person inhales droplet nuclei
TB Pathogenesis

What it does

1. Droplet nuclei containing tubercle bacilli are inhaled, enter the lungs, and travel to the small alveoli.

2. Tubercle bacilli multiply in alveoli, where infection begins.

3. A small number of tubercle bacilli enter bloodstream and spread throughout body.
TB Pathogenesis

What it does

- Within 2 to 8 weeks, MTB can be phagocytosed by alveolar immune cells
- The phagocytosed immune cells transport the MTB to local lymph nodes for T cells priming and cloning
- The immune cells form a barrier shell that keeps the bacilli contained and under control (LTBI)

TB Pathogenesis

What it does

- If the immune system CANNOT keep tubercle bacilli under control, bacilli begin to multiply rapidly and cause TB disease
- This process can occur in different places in the body

Clinical Disease *M. tuberculosis* can cause

- Initial infection of *M. tuberculosis* (primary)
- Progressive disease (primary TB)
- Dissemination of MTB
 - Stabilization (healing)
 - Recurrence (reactivation or primary TB)
- Resuscitation
Events following entry of bacilli
TB Pathogenesis

Stage 1:
- Phagocytosis of MTB by Alveolar macrophage
- Destruction of MTB, but some evade destruction & continue to multiply and then infect bystander macrophages

Events following entry of bacilli
TB Pathogenesis
Stage 2:
- Influx of Polymononuclear cells (PMN) and Monocytes-differentiate into Macrophage
- In some cases, it fails to eliminate the bacilli completely
- Logarithmic growth of bacilli-little tissue destruction

Events following entry of bacilli
TB Pathogenesis
Stage 3:
- Antigen specific T-cells are recruited to the site and activate monocytoyid cells and differentiate into two types of Giant cells
 - Epithiliod
 - Langhan
- Infection is walled off from rest of the body which prevents dissemination of bacilli.
Events following entry of bacilli
TB Pathogenesis

Stage 4:
- Stage of Latency (Granuloma) disrupts under conditions of failing immune surveillance & leads to endogenous reactivation of dormant bacilli
- Characterised by caseation necrosis

The Great Tuberculosis Paradox

• Up to 50% of people with close and repeated contact with confirmed index cases, even in high burden areas, have no immunodiagnostic evidence of Tb disease.
 - Sterilizing innate immunity
 - Likely related to host factors
Immunopathogenesis of TB

- Likelihood of transmission of *M. tuberculosis* from index case to a contact person depends on:
 - Intensity of exposure
 - Exposure duration
 - Sputum related host factors
 - *M. tuberculosis* strain virulence

TB Immunopathogenesis

- **Immune system vs. MTB**
 - Local inflammation
 - Activation of α/β T cells
 - Enhanced cytokine response
 - A lot of IFN-γ released

- **MTB immune evasion techniques**
 - Suppressive cytokines (TGFβ)
 - Effector molecules
 - Treg cells

TB Immunopathogenesis

- **The Achilles heel**
 - Increased susceptibility to TB with:
 - Suppressed CD4 or CD8 T cell levels - HIV
 - TNFα blockage
 - Hereditary IFN-γ
 - IL-2 receptor abnormalities or inhibition
 - Insight into immune requirements for protection against MTB
Innate Immunity to *M. tuberculosis*

- Promote bacterial killing with phagosomal maturation, producing reactive nitrogen and oxygen intermediates.
- Several pathways and cell types mediate an innate immune response to MTB.
- Therefore, many individuals may fail to have an immunodiagnostic evidence of MTB infection despite prolonged or high-risk exposure.

Adaptive Immunity to *M. tuberculosis*

- Mycobacterial infected macrophages and dendritic cells present antigens to T cells and B cells.
- Macrophage apoptosis releases apoptotic vesicles with MTB to uninfected DC for even greater antigen presentation.
Adaptive Immunity
CD4 T cell

- Th1
 - INFγ, TNFα, IL2, GM-CSF
 - Stimulation of CTL, macrophage activation
- Th2
 - IL4, IL5, IL10, IL13
 - B cell stimulation
 - Suppress Th1
- Th17
 - IL17, IL17F, IL21, IL22
 - Defesin, recruit neutrophils and monocytes
- T reg
 - TGFβ
 - Modulate T cell response

Adaptive Immunity to *M. tuberculosis*

- Activates and recruits immune cells
- Kills mycobacteria-infected cells

Adaptive Immunity to *M. tuberculosis*

- B cells were not thought to have a significant role in protecting against MTB
- Recent work showed that B cells were needed in MTB infected mice by acting as an intermediary for cellular immunity and the complement pathway.
Adaptive Immunity to *M. tuberculosis*

- Memory T cells are created specific to MTB antigens.
- Memory T cells are active and proliferate with recall responses.
- Specific, practical, clinical biomarkers of protective immunity has not been established.

Histology of TB disease

- Delayed hypersensitivity reaction
- Central Caesating necrosis
- Surrounded by lymphocytes, multi-nucleate giant cells and epitheloid macrophages
- Organisms may be identified within the macrophages.
Immunomodulation for Cure of TB

- Improve sterilizing immunity
- Decrease collateral damage of the immune system

- 95% of bacterial sterilization occurs in 2 weeks, but 6 months of therapy is needed.
 - Is immune modulation needed to stop a destructive immune pattern to a protective one?

Immunomodulation for Cure of TB

- Drive a Th1 response, turn off T reg
 - IL2, INFγ, steroids, thalidomide, TNFα antagonist-failed!
 - IVIG dramatically improves mycobacterial sterilization in a mouse model

- Many other agents in different stages of discovery and clinical trials

M. Tuberculosis vaccines

- MTB antigens ESAT-6, CFP-10 Ag85
 - Found in latently infected, or exposure individuals
 - Induce cytokine specific immune response
 - Provide protective immunity in animal models

- Provide a protective antigen through a vaccine or viral vector/gene therapy
M. Tuberculosis vaccines
Bacille Calmette Guerin

- BCG protective effect
 - Age, background infection rates, virulence of MTB strain, co-infection with helminths, T cell immunity to helminths, malnutrition
 - All factors that module the immune system
- Protects against MTB dissemination
- May protect against adult MTB infection in household contacts
- Prevent primary infection and/or prevent transition from LTBI to infection

Vaccine Candidates for MTB

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Description</th>
<th>Stage</th>
<th>Sponsor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1/06</td>
<td>tAg with adjuvant containing 6 antigens</td>
<td>Phase 1</td>
<td>ULS, Intrametals</td>
</tr>
<tr>
<td>OPIVA</td>
<td>HLA-A2 restricted fusion protein</td>
<td>Phase 1</td>
<td>NewPath/PATH/IHR</td>
</tr>
<tr>
<td>BCGv2</td>
<td>HLA-A2 restricted fusion protein</td>
<td>Phase 1</td>
<td>Avea</td>
</tr>
<tr>
<td>Scav-86</td>
<td>MtbCell protein</td>
<td>Phase 1</td>
<td>Costech/Cengene</td>
</tr>
<tr>
<td>Scav1-4</td>
<td>MtbCell protein</td>
<td>Phase 1</td>
<td>Costech/Cengene</td>
</tr>
<tr>
<td>BoNT24</td>
<td>PstI restricted antigen</td>
<td>Phase 1</td>
<td>GSK/Pasteur</td>
</tr>
<tr>
<td>KmpC</td>
<td>Fusion protein for vaccine with Mtb Vaccine Center</td>
<td>Phase 1</td>
<td>GSK/Pasteur</td>
</tr>
<tr>
<td>N94</td>
<td>Asr 4 fusion antigen</td>
<td>Phase 1</td>
<td>GSK/Pasteur</td>
</tr>
</tbody>
</table>

Challenges in vaccine development

- Children and adolescence
- HIV/TB co-infection – poor T cell response
- HIV/Helminth co-infection- strong Th2 response
- No good functional immune assays to predict a sterilizing response
- Role of Aerosolized vaccination?
TB Pathogenesis

Immunopathogenesis!

La Miseria by Cristobal Rojas (1886).