Drug Resistant Tuberculosis: Pearls and other Considerations

John W. Wilson, MD
Associate Professor of Medicine
Division of Infectious Diseases
Mayo Clinic, Rochester MN
Mayo Clinic Center for Tuberculosis
Disclosure

• None
Objectives

• Describe factors responsible for delayed response and/or treatment failure

• Describe treatment and management strategies for multidrug-resistant TB
TB Therapy Drug Resistance Definitions

• **Poly-resistant TB**
 - Resistance to >1 drug
 - but not isoniazid and rifampin

• **Multi-Drug Resistant (MDR) TB**
 - Resistance to at least isoniazid and rifampin

• **Extensively Drug Resistant (XDR) TB**
 - MDR (INH & rifampin) + plus:
 - Resistance to a fluoroquinolone + plus:
 - Resistant to an injectable (kanamycin, streptomycin, amikacin)
Risk Factors for Drug-resistant TB

1. Previous TB therapy – especially with
 • Prior non-DOT based therapy
 • Patient non-compliance
 • Incomplete treatment, lack of documentation
 • Non-CDC, non-WHO endorsed standard regimens
 • Acknowledging for a patient – *TB therapy is difficult*
 • Prolonged treatment program
 • Many pills
 • Common drug intolerances

2. Contact with a patient with drug-resistant TB

Seaworth B. IDCNA Vol 16, No. 1, 73-105. March 2002
MDR-TB Prevalence in the United States

• Primary MDR-TB cases 1.3% (98 cases) of all primary TB cases in 2011
 • 82.7% (81 of 98) in 2011 were in foreign-born persons

• Among patients with previous TB history, there were 26 MDR-TB cases
 • 25/26 occurred in foreign-born persons

3. Persons from countries with higher rates of drug-resistant/MDR TB cases

More than 6% of new TB cases are MDR-TB in these locations:
Azerbaijan, Baku City (22.3%)
Kazakhstan (20%)
Republic of Moldova (19.4%)
Ukraine, Donetsk (16%)
Russian Federation, Tomsk (15%)
Uzbekistan, Tashkent (14.8%)
Estonia (13.3%)
Russian Federation, Mary El (12.5%)
Latvia (10.8%)
Lithuania (9.8%)
Armenia (9.4%)
Russian Federation, Orel (8.8%)
China, Inner Mongolia (7.3%)
China, Heilongjiang (7.2%)
Georgia (6.8%)

MDR-TB Underreporting in Africa

A. Data from Third Global report on Anti-TB Drug Resistance in the World, WHO, 2004

B. Data from WHO publications, peer-reviewed journal articles and WHO’s Fourth Global report

C. Formulaic estimates JID 2006;194:479

Emerg Inf Dis 2008, 14(9): 1345
XDR-TB: A Global Dilemma

Countries that had notified at least one case of XDR-TB by the end of 2011

Problems of *Global* TB Containment

- Lack of Involvement of clinicians outside of public health TB control programs
 - E.g. private physicians
- Clinician deviation from standard internationally accepted DOTS TB management
- Under-use of sputum AFB smear microscopy
 - Over-reliance on CXRs
- Use of non-recommended TB drug regimens and combinations
- Mistakes in drug dosing and treatment duration
- Lack of supervised patient adherence

Hopewell. Lancet Inf Dis 2006;6:710
Problems of *Global* TB Containment-II

- Lack of mycobacteria culture lab facilities
- Lack of drug susceptibility testing
 - Phenotypic DST
 - MDDR
- Lack of newer agents:
 - Linezolid
 - Moxi/levofloxacin
 - BDQ
- Lack of surgical capacity
Second Line TB Medications

- Less effective
- More expensive
- More toxic
Second Line TB Medications

- Fluoroquinolones
 - Moxifloxacin, Levofloxacin
- Aminoglycosides
 - Streptomycin, Amikacin & Kanamycin
- Capreomycin
- Linezolid
- Ethionamide
- Cycloserine
- Para-Aminosalicylic Acid (PAS)
Principles of Drug-Resistant TB Management

• A single new drug should never be added to a failing regimen

• MDR/XDR treatment regimens are based on expert opinion, not clinical trials

• Several regimens exist based on different sites/guidelines
 • CDC/ATS/IDSA 2003 TB Treatment Guidelines
 • http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5211a1.htm
 • New York City Dept. of Health, TB Section, 2008:
 • Francis Curry TB Center / UCSF:
 • http://www.currytbcenter.ucsf.edu/drtb/drtb_ch3.cfm
Treatment options, regimens and basic approaches for drug-resistant TB
Monoresistance – Isoniazid

• Rifampin, PZA, Ethambutol x 6-9 months

• Considerations for more extensive disease:
 • Treat 9 months
 • Add fluoroquinolone (moxifloxacin, levofloxacin) or injectable (e.g. amikacin)

• Examples: ND, Wisc
Mono resistance - Rifampin

NYCHD

- Option 1: Induction - INH/PZA/EMB/inj/FQ x 2-3 mo. after culture conversion
 Continuation: INH/PZA/EMB+-/FQ x 12-14 mo. (18 total mo. preferred)

- Option 2: Induction - INH/PZA/SM+-/-EMB 2-3 mo. after culture conversion
 Continuation - INH/PZA/SM+-/-EMB x 3-5 mo. (9 mo. total)

Curry/UCSF

- Option 1: INH/EMB/PZA/FQ x 2 mo. then INH/EMB/FQ to complete 12-18 mo.

- Option 2: Option 1 +injectable for first 2 mo.

- Option 3: INH/PZA/SM(or other inj) x 9 mo.

CDC/ATS

- INH/PZA/EMB x 12-18 mo. (consider + FQ or Inj. if extensive disease)

- INH/PZA/SM x 9 mo.
Monoresistance to EMB, PZA, or SM

• Little impact on treatment efficacy
• Loss of EMB/SM does not change efficacy or treatment duration
• Loss of PZA: extend duration with INH/RIF by 3 mo. (9 mo. total)
Poly-resistant TB

- Resistance to >1 TB drug, but not INH & RIF
- Treatment should include as many 1st line drugs as possible + FQ and in some cases injectable
 - Composition and duration of therapy depended upon specific drug resistance profile
Approach to MDR-TB Management

• Include any active 1st line drug, then add FQ and injectable (amikacin/kanamycin/SM/capreomycin)

• Add oral 2nd line drugs to compose 4-6 drug regimen
 • Note: When restarting or revising therapy, always try to use at least 3 previously unused drugs to which there is demonstrated in vitro susceptibility (1 should be injectable)

• If there are not 4-6 active drugs available, then consider 3rd line drugs (clofazimine, imipenem, high dose-Augmentin, high dose-INH)

• Surgery can be considered with complex cavitary disease or slow clinical response
Additional considerations

- “Low level” INH resistance
 - INH resistance at MIC 0.2 mg/L, but active at MIC 1.0mg/L
 - Consideration for 900 mg INH twice weekly
 - Would not count INH as an “active” drug in regimen

- ~10-15 % rifampin resistant MTB may be susceptible to rifabutin (in vitro)
 - Rifabutin can be considered, but would not count as active drug
Composing an Effective Drug Treatment Program for MDR-TB

STEP 1

Begin with any first-line agents to which the isolate is susceptible

Add a fluoroquinolone and an injectable drug based on susceptibilities

First-line drugs
- Pyrazinamide
- Ethambutol

Fluoroquinolones
- Levofloxacin
- Moxifloxacin

Injectable agents
- Amikacin
- Capreomycin
- Streptomycin
- Kanamycin

Challenging
Composing an Effective Drug Treatment Program for MDR-TB

STEP 2

Add second-line drugs until you have 4–6 drugs to which the isolate is susceptible (and preferably which have not been used to treat the patient previously)

Pick one or more of these

Oral second-line drugs

- Linezolid
- Cycloserine
- Ethionamide
- PAS

More challenging
Composing an Effective Drug Treatment Program for MDR-TB

STEP 3

If there are not 4–6 drugs available in the above categories, consider **third-line drugs** in consultation with an MDR-TB expert.

<table>
<thead>
<tr>
<th>Third-line drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clofazimine</td>
</tr>
<tr>
<td>Imipenem</td>
</tr>
<tr>
<td>Amoxicillin/clavulanate</td>
</tr>
<tr>
<td>Macrolides</td>
</tr>
<tr>
<td>High-dose isoniazid</td>
</tr>
<tr>
<td>Other / BDQ</td>
</tr>
</tbody>
</table>

Most challenging
Extremely Drug resistant TB (XDR-TB)

• Resistance profile:
 • INH & rifampin = MDR strain) and:
 • A fluoroquinolone and:
 • One of injectables (kanamycin, streptomycin, amikacin)

• Similar approach to MDR TB but may need to use 3rd line drugs

• Surgery should strongly be considered

Expanded Treatment Regimen

• Used initially when suspicion of drug-resistant TB is high
 • In cases of relapse (esp. self-administered or inappropriate therapy), severe disease, or impaired immunity
 • Treatment failure
 • Close contact with MDR-TB case
 • High suspicion of MDR-TB based on country of origin/residence

• Start with all 4 first line drugs
 • Add 2 (or more drugs)-including FQ and injectable
 • For treatment failure, preferably add 3 new drugs
Other consideration:

• Delays in starting therapy until DST is occasionally considered:
 • Controversial
 • Stable disease in immunocompetent host
 • No vulnerable contacts at home
 • MDR or XDR-TB case when DST pending and construction of active regimen is in doubt
 • No flight risk

• Judgement call – high caution
The role of surgical resection

• Favorable results reported with resectional lung surgery in patients with MDR-TB

• Resective surgery considered for:
 • Patients with high-grade drug resistance (limited drug options)
 • Relatively localized lung disease
 • Lack of initial response

• NJMC, Denver with high experience
 • Dedicated surgeon / surgical team (Dr. M Pomeranz)
 • Pneumonectomy or lobectomy

Pomerantz et al. J of Thorac Cardiovasc Surg. 2001;121(3) 448-53
The role of surgical resection - timing

- When surgical resection is favored
 - e.g. cavitary disease, necrotic / avascular lung tissue

- Optimal timing for surgery can be difficult to determine

- Consider delaying surgery for a few months after start of combination drug therapy
 - Lower TB organism burden
 - Enhanced patient nutrition / weight gain
 - Improved postoperative tissue healing

Pomerantz et al. J of Thorac Cardiovasc Surg. 2001;121(3) 448-53
Successful MDR-TB outcomes not necessarily limited to surgical resection

• Inclusion of better 2nd line drugs - e.g.:
 • Newer fluoroquinolones (Moxifloxacin / levofloxacin); Injectables (prolonged periods of time); Linezolid
 • Even better when PZA or EMB remain active

• Medical management a consideration when an active combination drug regimen can be composed
 • Inclusion of ≥ 5 drugs with in vitro activity

• Pushing serum levels to upper limits of therapeutic window (roles for TDM)

Principles for MDR and XDR-TB management

- Providers need to be comfortable asking for assistance
- Most providers are not overly experienced in drug-resistant TB management
- Our Mayo TB Center practice utilizes Region-5 MDR-TB Team consensus with more complex TB drug-resistant cases
- Such patients may not have a “2nd chance” for treatment success
Principles for MDR and XDR-TB management - II

Co. and State Public health departments need to be involved for case management:

• Directly observed therapy (DOT) *is crucial*
• Heightened monitoring for treatment response and drug toxicities
• Contact investigations
Second Line Anti-TB drugs
Properties and dosing
Fluoroquinolones

- Preferred oral agents for drug-resistant TB if sensitive to this drug or for drug intolerance of any first line agents
- Mechanism of action: DNA gyrase inhibitors
- Potency: moxifloxacin, levofloxacin > ofloxacin, ciprofloxacin
- Avoid in pregnancy
- Better tolerated compared to other 2nd-line agents
 - Adverse effects: GI disturbance, tendinopathy, peripheral neuropathy
- Dose: Levofloxacin 750 - 1,000 mg/day
 Moxifloxacin 400 mg /day
Aminoglycosides

• Resistance Patterns
 • Resistance to amikacin = resistance to kanamycin
 • MTB resistant to streptomycin usually susceptible to amikacin / kanamycin
 • Resistance to amikacin / kanamycin can sometimes induce resistance to streptomycin (variable frequency)

• IM / IV administration; Renal metabolism
• Vestibular/ototoxicity/nephrotoxicity
• Avoid in pregnancy - can cause auditory nerve and renal damage in fetus
Capreomycin

- Polypeptide antibiotic
 - Usually no cross-resistance with aminoglycosides
 - Bactericidal
- Only available IM/IV
- Usually given 5-7 times/week
- Auditory/vestibular/renal toxicity
- Do not use in pregnancy
Ethionamide

- Near complete oral absorption
 - Hepatic metabolism
- Avoid in pregnancy - teratogenic
- Concomitant administration of pyridoxine (B6) recommended - similar structure & mechanism as INH

Adverse reactions:

- GI intolerance – (high likelihood) N/V, diarrhea, dysgeusia; metallic taste
- Arthralgias; peripheral neuropathy
- Hypothyroidism; Glucose intolerance
 - Coadministration with PAS increases risk
Cycloserine

• Mechanism: interferes with bacterial cell wall synthesis

• Good CNS penetration

• Oral drug; excreted in urine

• Adverse effects: CNS (headaches, seizures, psychosis, depression), vertigo, peripheral neuritis (give pyridoxine)
 • Avoid in pregnancy unless no alternatives
Para-aminosalicylic acid (PAS)

• Bacteriostatic agent

• Oral: delayed-release granules (acid-resistant outer coating)
 • CSF penetration: 10 - 50%
 • 50% - Hepatic metabolism, 80% - Renal excretion

• Adverse reactions:
 • Bulky, unpleasant taste
 • GI disturbance - anorexia, nausea, vomiting, abdominal discomfort
 • Hypothyroidism, goiter (PAS has anti-thyroid effect)
 • Caution when administering with Ethionamide
 • Hepatic dysfunction
 • Hypersensitivity reaction / skin rash
Dose Escalation Strategies: Ethionamide, Cycloserine, PAS

• Relevant Drugs:
 • Ethionamide
 • Cycloserine
 • Para-aminosalicylic acid

• Purpose:
 • Improved patient tolerance (gradual dose escalation)
 • More precise dosing for acceptable serum drug levels
Dose Escalation Strategies: Ethionamide, Cycloserine, PAS

- Ethionamide & cycloserine
 - Start with 250 mg daily x a few days
 - Increase to 250 mg bid x a few days
 - Increase to 250 mg/qAM and 500 mg q/PM
 - Check serum level

- PAS (Paser granules, sachet packets)
 - Start with 2 gm bid x a few days
 - Increase to 2 gm/qAM and 4 gm qPM x few days
 - Increase to 4 gm bid
 - Check serum level
Linezolid usage

• An oxazolidinone

• Toxicities – significant (> 50%) and include:
 • Neuropathies - peripheral & optic
 • Myelosuppression
 • Hyperlactatemia
 • Risk of serotonin syndrome with SSRIs

• Bacteriostatic; binds rRNA; inhibits protein synthesis

• Dosing: 600 mg daily successfully used

Linezolid usage

• Dosing of 300 mg /d can be effective for MDR-TB
 • Possibly lower adverse effects compared to 600 mg daily or bid
• 300 mg/d dosing can achieve serum concentrations greater than MIC values (<0.25 mg/L)
• Favorable penetration into pulmonary & soft tissues

Bedaquiline – a new diarylquinoline

• FDA ‘accelerated approval’ Dec. 2012
• Inhibits mycobacterial ATP synthase
• Spectrum of activity includes: *M. tuberculosis* and select NTM (including MAC)
• Indications: treatment of pulmonary MDR-TB in pts ≥ 18 yo when optimal TB drug program cannot be constructed
• BDQ dosing: 400 mg daily x 2 weeks, then 200 mg TIW x 22 weeks – then off
Bedaquiline – concerns and limitations

- Increased risk of death (11.4% vs. 2.5% in comparator group)
- Elevated QTc (although not felt to be a major risk by CDC group meeting)
 - May be additive with other QTc prolonging drugs - *caution by FDA
- Higher hepatic adverse reactions
- Drug interactions via Hepatic CYP 3A
 - M2 is major metabolite (4-6x less potent)
 - BDQ does not increase or decrease 3A4 activity
 - Rifampin will decrease BDQ levels (via accelerated 3A4 metabolism)
- Limited data in HIV co-infected patients

CDC RTMCC meeting January 14-15, 2013
New drugs on the horizon

• OPC – 67683 (Delaminid)
 • Nitro dihydro imidazoxoazole
• PA-824; nitroimidazole
• AZD 5847; oxazolidinone
July 2000 – 1st day on staff

- 32 yo Somali female, 8 weeks pregnant
 - Pulmonary MDR-TB with RUL cavity
 - Resistant to INH, RIF, PZA
- EMB – optic neuritis
- AMK – ototoxicity
- Ethionamide – hypothyriod
- PAS – drug rash
- Levofloxacin – ok
- PAS – GI upset
Remember – the negative stigma of drug-resistant TB is not simply abroad
Drug resistant TB can be challenging to manage; but if a basset hound can learn to run……then together we can eliminate drug resistant TB!