Disclosures

• None
Objectives

• By the end of this session, participants should be able to:

• Describe various tests used for diagnosing active TB

• Prescribe anti-TB regimens for treating drug-susceptible TB

• Articulate major medical management issues in the treatment of active TB
Diagnosis of Active Tuberculosis
TB Diagnostic Modalities

• Stains

• Culture

• Molecular methods for identification of *M. tuberculosis*
 • from culture isolates
 • directly from specimen

• *M. tuberculosis* drug resistance testing
 • rapid broth-based methods
 • molecular markers of resistance
What Happens to the Patient’s Specimen When It is Sent to the Lab?

- **Specimen**
- **Smear**
 - Perform Acid-Fast Smear – Mycobacteria Present?
- **Culture**
 - Perform culture on specialized medium
 - If culture grows, identify mycobacterium using molecular methods (hybridization probes, MALDI-TOF MS, or DNA sequencing)
- **ID**
- **AST**
 - Perform drug resistance testing on isolate

PCR

Perform Direct PCR for *M. tuberculosis*
Stains for Mycobacteria

• Why perform a stain?
 • Rapid, inexpensive
 • Fast turn around
 • A stain may take an hour to perform and report
 • A mycobacterial culture requires weeks
 • Molecular methods such as PCR are also quick but cost more and we only have good ones for Mtb
 • May indicate infectiousness

• What kind of stain is done?
 • An “Acid-fast” stain is used (eg., auramine/rhodamine, Ziehl-Neelsen, or Kinyoun stain)
 • Mycobacteria do not stain with the Gram stain
Acid-fast stains for mycobacteria

- mycobacteria are referred to as “acid-fast” bacilli (AFB)
- a complex is formed between mycolic acid and dye used in the stain (e.g., carbol-fuchsin or auramine O)
- this complex is resistant to destaining by mineral acids (this is why mycobacteria are called “acid-fast”)
- so mycobacteria retain the carbol-fuchsin or auramine O stain and other bacteria do not
Staining for Mycobacteria
Acid-fast stains - Issues

• Acid-fast stains are not very specific
 • indicates whether a mycobacterium is present in the specimen
 • does not allow us to know which mycobacteria it is
 • *M. tuberculosis* looks like all the other mycobacterial species on an acid-fast stain

• Acid-fast stains are not very sensitive
 • need 1000-10,000 CFU/ml for a positive AFB smear
2-3 AFB Smears are More Sensitive than 1 Smear
Yield of Serial AFB Smears

<table>
<thead>
<tr>
<th>Study</th>
<th>% of Total Positives Detected by:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1<sup>st</sup> Smear</td>
</tr>
<tr>
<td>Walker et al. (2000), Int J Tuberc Lung Dis, 4:246.</td>
<td>77.1%</td>
</tr>
<tr>
<td>Ipuge et al. (1996), Trans R Soc Trop Med Hyg, 90:258.</td>
<td>83.4%</td>
</tr>
<tr>
<td>Mathew et al. (2002) J Clin Microbiol, 40:3482-4 (low prevalence pop.)</td>
<td>89.4%</td>
</tr>
</tbody>
</table>
Acid-Fast Smears Prepared from Early Morning Sputum Specimens Have Better Sensitivity

<table>
<thead>
<tr>
<th>Study</th>
<th>Spot (Random) Specimen Positive (%)</th>
<th>Early Morning Specimen Positive (%)</th>
</tr>
</thead>
</table>
Mycobacteria Cultures

Necessary to obtain an isolate of the mycobacterium for:

- species identification
- antimicrobial susceptibility testing
Culture of *M. tuberculosis* complex

- Sensitivity of culture is much better than smear
 - a positive AF smear requires 1000-10,000 CFU/ml of specimen
 - a positive mycobacteria culture requires only 10-100 CFU/mL of specimen

Culture

- 2 types of media used:
 - Solid Medium (Lowenstein-Jensen (LJ) or Middlebrook)
 - Broth (Liquid) Medium (FDA-cleared systems - Bactec MGIT and Trek VersaTREK)
 - In general, mycobacteria grow faster in broth but there are some strains that grow better on solid medium
M. tuberculosis Colony Morphology on Solid Medium

Note the “rough and buff” morphology typical of *M. tuberculosis*
BACTEC MGIT 960 Culture System

MGIT - Mycobacterial Growth Indicator Tubes (Becton Dickinson)
 - fluorescent indicator in bottom of tube quenched by O_2
 - ↑ mycobacterial growth = ↓ O_2 and ↑ fluorescence
VersaTREK System

- mycobacterial growth causes changes in bottle headspace pressure which are detected by the instrument; sponges in bottle provide increased surface area for growth

Identification of *M. tuberculosis* complex from culture
Identification of M. tuberculosis complex from culture

- Nucleic Acid Hybridization Probes
- Line probe Hybridization Assays
- DNA sequencing
- MALDI-TOF
Identification of MTB from Culture Isolates: Nucleic Acid Hybridization Probes

- Use for Isolates Grown in Culture
 - no DNA amplification step so need lots of target nucleic acid
 - add probe with unique, complementary sequence to known species; chemiluminescent detection
 - identification within 2-3 hours after growth in culture

If the culture isolate is MTB, the DNA probe will bind isolate’s rRNA and produce a signal
Identification of MTB from Culture Isolates: Nucleic Acid Hybridization Probes

- Hologic Gen-Probe AccuProbes® (nucleic acid hybridization probes) available for:
 - *M. tuberculosis* complex
 - *M. avium* complex
 - *M. gordonae*
 - *M. kansasii*

- FDA-approved for identification of culture isolates

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. tuberculosis complex</td>
<td>99.2%</td>
<td>99.0%</td>
</tr>
</tbody>
</table>
Identification of MTB from Culture Isolates:
Line Probe Hybridization Assays
(Hain Lifesciences or Innogenetics)

- Genus- and species-specific probes bound to nitrocellulose membrane
- DNA from lysed culture isolate hybridizes to the probe for identification.
- Hain products (as an example):
 - GenoType Mycobacterium CM and AS
 - *M. tuberculosis* complex and 29 nontuberculous mycobacteria on 2 strips
 - GenoType MTBC
 - Differentiation of *M. tuberculosis* complex
 - GenoType MTBDR plus
 - *M. tuberculosis* complex plus wt and mutant *rpoB, katG, inhA*

Not approved for diagnostic use in U.S. at this time
Source: http://www.hain-lifescience.de
Identification of MTB from Culture Isolates: DNA Sequencing

- Sanger dideoxy sequencing is the current gold standard for mycobacteria identification
 - Various targets are useful (rpoB, hsp65, 16S rDNA gene, etc.)
 - Uses broad range primers that will amplify all mycobacteria species
 - Hypervariable region between primers used to distinguish species

Identification of MTB from Culture Isolates: MALDI-TOF MS

BSL3 Activities

10ul loop-ful of organism → Beads+500µl 70% Ethanol → Incubate room temp 10 min → Bead Beat 2 minutes

BSL2 Activities

Centrifuge 5 min → Speed Vac 10 min → 70% Formic Acid & Acetonitrile

MALDI-TOF

Spot 1ul sample + 2ul of Matrix

start to finish takes ~2 hrs for 24 samples

MALDI-TOF Identification of MTB from Culture Isolates: MALDI-TOF MS

start to finish takes ~2 hrs for 24 samples

MALDI-TOF
Drug Resistance Testing of *M. tuberculosis* complex
M. tuberculosis complex Drug Resistance Testing

- agar proportion is the current gold standard for all drugs except pyrazinamide
 - not rapid (14-21 days)
 - labor-intensive, technically complex
 - no FDA-cleared, commercially-available kit

Organism is resistant to drug A in the upper right compartment (>1% of inoculum shown by upper left control quadrant is growing in presence of drug). Organism is susceptible to drugs B & C in the lower compartments. Control quadrant in upper left contains no drugs.
Rapid Broth Susceptibility Testing for MTB
FDA-cleared, semi-automated with MGIT or VersaTREK systems

Compare growth rates in bottles/tubes +/- critical concentrations of drug

CDC goal is results for first-line drugs reported within 15-30 days after receipt of the specimen
M. tuberculosis complex resistant isolates

• If the isolate is resistant to any agent
 • preliminary report issued
 • consider confirming resistance by 2nd method or 2nd lab
 • consider initiating testing of secondary agents to avoid delays

• If the isolate is resistant to only PZA consider
 • speciation
 • M. bovis is mono-PZA-resistant
 • most isolates of M. tuberculosis are PZA-susceptible
Molecular detection of *Mtb* drug resistance markers

Why?

Rapid determination of potential drug resistance compared with phenotypic methods

Limited availability at this time except for the CDC MDR TB program
Xpert MTB/RIF and Rifampin resistance

- Target is \(rpoB \): gene encoding beta subunit of bacterial RNA polymerase
- Mutations in an 81bp region of the \(rpoB \) gene are responsible for \(~96\%\) of RIF resistance in \(Mtb \);
- also predicts MDR TB since the majority of RIF-resistant isolates will also be INH-resistant
- Some false positive RIF resistance with Xpert
 - PPV is lower in low prevalence settings
 - CDC recommends reporting Xpert RIF-R as a preliminary result pending confirmation with sequencing; growth-base DST is still required
Molecular Detection of *M. tuberculosis* Drug Resistance at the CDC

- offered for *M. tuberculosis* complex isolates and nucleic-acid amplification-positive (NAAT+) sputum sediments
- perform pyrosequencing and conventional sequencing
- provides rapid identification of mutations associated with resistance to many TB drugs
- limitations include
 - insufficient data to definitively associate all mutations detected with resistance;
 - not all mechanisms of resistance are known
 - not all resistance loci are sequenced
- use in conjunction with conventional DST results
Molecular resistance testing for MTB at the CDC

<table>
<thead>
<tr>
<th>Drug</th>
<th>Locus/Loci examined</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>rifampin</td>
<td>rpoB</td>
<td>97.1</td>
<td>97.4</td>
</tr>
<tr>
<td>isoniazid</td>
<td>inhA & katG</td>
<td>86.0</td>
<td>99.1</td>
</tr>
<tr>
<td>fluoroquinolones</td>
<td>gyrA</td>
<td>79.0</td>
<td>99.6</td>
</tr>
<tr>
<td>kanamycin</td>
<td>rrs & eis</td>
<td>86.7</td>
<td>99.6</td>
</tr>
<tr>
<td>amikacin</td>
<td>rrs</td>
<td>90.0</td>
<td>98.4</td>
</tr>
<tr>
<td>capreomycin</td>
<td>rrs & tlyA</td>
<td>55.2</td>
<td>91.0</td>
</tr>
<tr>
<td>ethambutol</td>
<td>embB</td>
<td>78.8</td>
<td>94.3</td>
</tr>
<tr>
<td>pyrazinamide</td>
<td>pncA</td>
<td>86.0</td>
<td>95.9</td>
</tr>
</tbody>
</table>

What Happens to the Patient’s Specimen When It is Sent to the Lab?

- Specimen
 - Perform Acid-Fast Smear – Mycobacteria Present?
 - Smear
 - Culture
 - Perform culture on specialized medium
 - ID
 - If culture grows, identify mycobacterium using molecular methods (hybridization probes, MALDI-TOF MS, or DNA sequencing)
 - AST
 - Perform drug resistance testing on isolate
 - PCR
 - Perform Direct PCR for *M. tuberculosis*
Direct Identification of *M. tuberculosis* complex from patient specimen *without waiting* for growth in culture

In general, we have good molecular methods for direct detection of MTB but not for NTMs.
Nucleic Acid Amplification-based (NAA) tests for MTB

- CDC recommendation:
 - NAA testing be performed on at least one (preferably the first) respiratory specimen from each patient with suspected pulmonary TB
 - if it would alter case management
 - If it would alter TB control activities
 - NAA testing does not replace the need for culture
NAA Tests for Direct Detection of MTB

- FDA-cleared
 - Hologic/Gen-Probe MTD
 - Cepheid GeneXpert MTB/RIF
- CE-marked/RUO in U.S.
 - Hain LineProbe
- Laboratory Develop Tests (LDTs)
 - Rapid cycle/real-time PCR
Direct Detection of MTB from Patient Specimens
Mycobacterium tuberculosis Direct Test (MTD)
(Hologic Gen-Probe)

- people frequently refer to this as the “TB probe” assay but that is not correct; this is a PCR-like amplification method
 - transcription-mediated amplification of *M. tuberculosis* complex rRNA directly from respiratory specimens
- clinical specificity: 99-100%
- clinical sensitivity:
 - smear positive: 91-95%
 - smear negative: 83-100%
- technically challenging test
 - inhibition from specimen components a concern;
 - open PCR system so false positives due to cross-contamination of specimens are possible.
 - cross-reactions occur w/ some rare mycobacteria: *M. celatum*, *M. terrae*-like organisms, *M. holsiatricum*
Direct Detection of MTB from Patient Specimens
Cepheid Xpert® MTB/RIF Test

• WHO-endorsed
• Runs on the Cepheid GeneXpert platform
• FDA-approved for respiratory specimens
• Detects *M. tuberculosis* complex and provides information about RIF resistance
• Results in about 2 hrs; minimal hands-on needed

Source: www.finddiagnostics.org
Xpert MTB/RIF accuracy for detection of *Mtb* complex

- Limit of Detection is 131 CFU/ml (package insert)

- Chang et al, 2012, J Infect 64:580-8:
 - Meta-analysis of 18 studies with 10,224 patients total
 - Pulmonary TB:
 - Sensitivity, Smear positive disease – 98.7%
 - Sensitivity, Smear negative disease – 75.0%
 - Specificity - 98.2%
 - Extrapulmonary TB:
 - Sensitivity - smear positive, 95.2%; smear negative 70.7%
 - Specificity – 82.6%

- Time to diagnosis comparison:
 - Smear microscopy = same day (but non-specific)
 - Broth culture took an average of 16 days
 - Solid media plate cultures took an average of 20 days
 - Xpert MTB/RIF – same day diagnosis
Direct Detection of MTB from Patient Specimens
Line Probe Assays (Hain Lifesciences)

M. tuberculosis complex direct detection

Not approved for diagnostic use in the U.S.

Source: http://www.hain-lifescience.de
Direct Detection of MTB from Patient Specimens

Laboratory-developed PCR Tests (LDTs)

Example of Real-time PCR Workflow in our Laboratory

- specimen or culture lysis, inactivation and processing
- DNA extraction
- PCR amplification and detection

Approximate turn-around time = 4h
Direct Detection of MTB from Patient Specimens

Laboratory-developed PCR Tests (LDTs)

Advantages

• closed PCR system – reduced opportunity for false-positives
• good sensitivity and specificity but it can vary since each test developed/verified independently
• often less expensive
• some can be used on a wider variety of specimen types included smear negative specimens and formalin-fixed, paraffin-embedded tissue blocks

Limitations

• Often not as well-characterized as FDA-cleared tests
 • How does sensitivity and specificity compare to cleared tests?
• Payer reimbursement and regulatory issues for LDTs
General Limitations of NAA tests for Direct Detection of *M. tuberculosis*

- Inhibition from specimen components a concern for falsely negative results
 - Inhibition control needed unless system lab has checked for inhibitors in all specimen types
- PCR detects presence of nucleic acid but doesn’t indicate if the organism is still viable
 - Patient could be being treated successfully but may still have a positive PCR result
- Culture is more sensitive so always perform culture too
 - Negative PCR result does not rule out *M. tuberculosis* infection
 - Culture isolate is needed for drug susceptibility testing
Summary

• AFB stains are rapid but insensitive and nonspecific
• Mycobacterial culture should always be ordered together with AFB stain
• Identification after growth in culture is rapid using molecular methods
• Direct identification of MTB using molecular methods most often uses smear-positive respiratory specimens; certain methods allow for other specimens
• Molecular detection of some drug resistance markers is available for Mtb culture isolates and directly for smear-positive respiratory specimens
Treatment of Active Tuberculosis
Treatment of Drug-Susceptible TB Disease

<table>
<thead>
<tr>
<th>Phase</th>
<th>Details</th>
</tr>
</thead>
</table>
| **Initial Phase** | • First 8 weeks of treatment
• Most bacilli killed during this phase
• 4 drugs used |
| **Continuation Phase** | • After first 8 weeks of TB disease treatment (18 or 31 weeks duration)
• Bacilli remaining after initial phase are treated with at least 2 drugs |
Current Preferred Regimens for Drug-Susceptible TB disease:

- Isoniazid, Rifampin, Pyrazinamide, Ethambutol

- **Isoniazid & Rifampin are the cornerstones**
 - Both are **bactericidal** against rapidly dividing mycobacteria
 - **Rifampin** also exhibits excellent late **sterilizing** effect on semi-dormant organisms
 - Non-INH based regimen = usually 9 months
 - Non-Rifampin regimen = 12-18 months (variable)

- **Pyrazinamide**
 - Potent **sterilizing** ability
 - Non-pyrazinamide based regimen = 9 months

- **Ethambutol**
 - Hedge against resistance
Standard TB Therapy for Drug-Susceptible Disease

• **Initial Phase:**
 - 4 drugs for 2 months (8 weeks)
 - Rifampin, isoniazid, pyrazinamide, ethambutol
 - Okay to stop ethambutol, once it is known that isolate is susceptible to rifampin, isoniazid, and pyrazinamide

Standard TB Disease Continuation Therapy

- **Continuation Phase:**
 - Rifampin & Isoniazid for 4 months (18 weeks)
 - Six months (26 weeks) total course of therapy
 - If PZA not used in initiation, then 7 months (31 wk) continuation

- **Continuation Phase: for cavitary disease AND positive cultures after initiation phase**
 - Rifampin & Isoniazid x 7 months (31 weeks) if cavitary disease at diagnosis and positive cultures after initiation phase at 2 months
 - Nine months (39 weeks) total course of therapy

Noncompliance or Abandonment of Therapy is Major Impediment of TB Treatment

• Directly observed therapy (DOT) has been shown to:
 • Facilitate treatment completion rates and bacteriologic evidence of cure
 • Decrease acquired and primary drug resistance
 • Decrease relapse rates

• CDC and American Thoracic Society (ATS) recommend consideration of DOT for all and
 • Especially for those with drug resistant organisms, cavitary disease, or HIV infection

TABLE 2. Drug regimens for culture-positive pulmonary tuberculosis caused by drug-susceptible organisms

<table>
<thead>
<tr>
<th>Initial phase</th>
<th>Continuation phase</th>
<th>Range of total doses (minimal duration)</th>
<th>Rating* (evidence)†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regimen</td>
<td>Drugs</td>
<td>Interval and doses‡ (minimal duration)</td>
<td>Regimen</td>
</tr>
<tr>
<td>1</td>
<td>INH</td>
<td>Seven days per week for 56 doses</td>
<td>1a</td>
</tr>
<tr>
<td></td>
<td>RIF</td>
<td>(8 wk) or 5 d/wk for 40 doses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PZA</td>
<td>(8 wk)¶</td>
<td>1b</td>
</tr>
<tr>
<td></td>
<td>EMB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>INH</td>
<td>Seven days per week for 14 doses</td>
<td>1c</td>
</tr>
<tr>
<td></td>
<td>RIF</td>
<td>(2 wk), then twice weekly for 12 doses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PZA</td>
<td>(6 wk) or 5 d/wk for 10 doses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EMB</td>
<td>(2 wk), then twice weekly for 12 doses (6 wk)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>INH</td>
<td>Three times weekly for 24 doses</td>
<td>2a</td>
</tr>
<tr>
<td></td>
<td>RIF</td>
<td>(8 wk)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PZA</td>
<td></td>
<td>2b</td>
</tr>
<tr>
<td></td>
<td>EMB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>INH</td>
<td>Seven days per week for 56 doses</td>
<td>3a</td>
</tr>
<tr>
<td></td>
<td>RIF</td>
<td>(8 wk) or 5 d/wk for 40 doses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EMB</td>
<td></td>
<td>4a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evidence Ratings:
A=preferred, B=acceptable alternative, C= when A&B cannot be given, E=never
I=randomized controlled trial, II=Clinical trials, not randomized or done in other populations

ATS; CDC; IDSA. Treatment of Tuberculosis. MMWR 2003;52(RR-11):1-77.
Key Points: Treatment of TB Disease

• **Initiation:**
 - RIF/INH/PZA/EMB until susceptibilities confirmed
 - Can stop EMB if susceptible to RIF/INH/PZA
 - RIF/INH/PZA for 8 weeks

• **Continuation:**
 - RIF/INH for 18 weeks
 - If PZA not used in initiation or if patient has cavitary disease + positive cultures at 8 wks, then RIF/INH continued for 31 weeks
Treatment of Extrapulmonary TB Disease

- Generally the same treatment as for pulmonary TB
- Addition of corticosteroids for:
 - TB pericarditis
 - TB meningitis
- Recommended that duration of therapy be extended to 9-12 months for TB meningitis
 - May extend to 18 months for tuberculoma

ATS; CDC; IDSA. Treatment of Tuberculosis. MMWR 2003;52(RR-11):1-77.
Sputum Culture Monitoring During Pulmonary TB Treatment

- Serial sputum smears every 2 weeks to assess early response
- Monthly sputum for AFB smear and culture (until 2 consecutive cultures negative)
- Repeat drug-susceptibility tests if culture-positive after 3 months of treatment

ATS; CDC; IDSA. Treatment of Tuberculosis. MMWR 2003;52(RR-11):1-77.
Clinical Monitoring During Pulmonary TB Treatment

• Periodic (minimum monthly) evaluation to review adherence and identify adverse reactions

• Repeat chest x-ray:
 • After 2 months treatment for patients with negative cultures
 • As clinically indicated for worsening
 • At end of treatment
Diagnostic Monitoring During Pulmonary TB Treatment

• Liver enzymes at baseline; HIV testing at baseline; hepatitis testing if indicated; monthly liver enzymes if indicated

• Renal function and CBC if abnormalities at baseline

• Visual acuity and color vision at baseline if EMB used and monthly
 • If EMB used > 2 months or
 • EMB dose > 15-20 mg/kg or
 • EMB with renal failure
TB Treatment in Pregnancy/Breastfeeding

- **INH considered safe in pregnancy/breastfeeding**
 - Risk of hepatitis increased in peripartum period
 - Pyridoxine (25 mg/day) recommended if INH is administered during pregnancy, administer to infant if breastfeeding

- **RIF & EMB considered safe in pregnancy & breastfeeding**

- **PZA - little information in pregnancy, generally avoided in US**
 - Safe for breastfeeding
 - Benefits of PZA may outweigh the risk (drug resistant cases)
 - WHO & IUATLD recommend this drug for use in pregnant women with tuberculosis
Treatment of Culture-negative Pulmonary TB

Continuation phase is shortened to 2 months

ATS; CDC; IDSA. Treatment of Tuberculosis. MMWR 2003;52(RR-11):1-77.